

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
CrossTalk: The Journal of Defense Software Engineering. Volume 20,
Number 9, September 2007

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
OO-ALC/MASE,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CROSSTALK The Journal of Defense Software Engineering September 2007

4

10

14

20

24

3
9

16-17
30

31

D eD e p ap a rr t m e n t st m e n t s

From the Publisher

Coming Events
Call for Articles Ad

SSTC 2007

Web Sites
More Online From CrossTalk

BackTalk

The Security of Web Services as Software
This article both describes the content of Special Publication 800-95 and
highlights its critical omissions in terms of measures needed to produce
Web service software that is in and of itself secure.
by Karen Mercedes Goertzel

Four Pillars of Service-Oriented Architecture
This article outlines four pillars to Service-Oriented Architecture (SOA)
success and proposes how a Department of Defense organization can
develop and implement an effective strategy for SOA implementation.
by Grace A. Lewis and Dr. Dennis B. Smith

Defining Services Using the Warfighter’s Language
This article emphasizes the need to implement services in a way that
reflects the warfighter’s needs and expectations.
by Michael S. Russell

Applying a Service-Oriented Architecture to Operational
Flight Program Development
This article describes how an SOA was successfully applied to re-use
data and applications previously deployed in single-user, single-computer
configurations.
by Mitch Chan

For Net-Centric Operations, the Future Is Federated
This article outlines several key strategies for leading the way to a true
net-centric approach to SOA life-cycle quality and testing.
by John Michelsen

OpenOpen FFororumum

Service-OrService-Orientediented ArArchitecturchitectureses
CrossTalk

CO-SPONSORS:

DOD-CIO

NAVAIR

76 SMXG

309 SMXG

402 SMXG

DHS

STAFF:
MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

The Honorable John Grimes

Jeff Schwalb

Kevin Stamey

Norman LeClair

Diane Suchan

Joe Jarzombek

Brent Baxter

Elizabeth Starrett

Kase Johnstun

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555
crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Department of
Defense Chief Information Office (DoD-CIO); U.S.
Navy (USN); U.S. Air Force (USAF); Defense Finance
and Accounting Services (DFAS); and the U.S.
Department of Homeland Security (DHS). DoD-CIO
co-sponsor: Assistant Secretary of Defense
(Networks and Information Integration). USN co-
sponsor: Naval Air Systems Command. USAF co-
sponsors: Oklahoma City-Air Logistics Center (ALC)
76 Software Maintenance Group (SMXG); Ogden-
ALC 309 SMXG; and Warner Robins-ALC 402
SMXG. DHS co-sponsor: National Cyber Security
Division of the Office of Infrastructure Protection.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 13.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham

ON THE COVER

September 2007 www.stsc.hill.af.mil 3

From the Publisher

Joe Jarzombek, the Department of Homeland Security (DHS) Director for Software
Assurance, stated that with more organizations considering Service-Oriented

Architectures (SOAs) for their applications and services and with software as a service
gaining traction, we need to directly address the reality that these are built on software
applications and also address factoring security needs into development, acquisition,
and deployment decisions. SOAs provide an avenue to develop, operate, and access
distributed computing systems. While traditional quality and information assur-

ance methodologies tended to focus on closed or tightly-controlled monolithic systems,
the reality of SOA has moved us away from that conventional thinking and forced the
mainstream Information Technology establishment to operate in a complex distributed
computing world.

SOAs provide numerous conveniences and additional challenges along with those con-
veniences. As the highlighted co-sponsor for this issue of CROSSTALK, the DHS focus-
es on the security challenges of the enabling applications for SOAs.

With this important focus, we start this month’s CROSSTALK with The Security of Web
Services as Software by Karen Mercedes Goertzel. In this article, Goertzel stresses the need
to focus on security while developing the software that enables SOAs. We take a step back
with the following article to focus on enablers of overall SOA success. Grace A. Lewis and
Dr. Dennis B. Smith discuss developing an appropriate SOA strategy, implementing effec-
tive SOA governance, making sound technology assessments, and accounting for the fact
that SOA requires a different mindset in Four Pillars of Service-Oriented Architecture. Next,
Michael S. Russell addresses practical applications for the warfighter in Defining Services
Using the Warfighter’s Language. Mitch Chan provides an example of a current successful
application in Applying a Service-Oriented Architecture to Operational Flight Program Development.
In our final article, For Net-Centric Operations, the Future Is Federated, John Michelsen suggests
a system intended to ease sharing of burden for shared software services.

Total SOA Assurance represents the merging of what was considered distinct domains
of computer system assurance. Quality assurance, information assurance, and operations
are all merging to a place where one cannot exist without the other. The buyers of tech-
nology and consulting services around SOA must become well-educated consumers. To
that end, we should focus on current and developing concepts around total SOA assurance.
As the nature of future distributed computing systems will cross organizational and polit-
ical boundaries, a new framework of thinking about SOA needs to begin to handle the
myriad of issues that surround interoperation organizations.

As the increasingly popular delivery scheme, SOA provides the enabling framework for
software applications, yet it tends to further separate the user from the enabling software.
Lest this separation cause the community to forget the challenges posed and faced by all
involved with the software, the articles in this issue of CROSSTALK are intended to
bring some key ideas to the forefront.

SOA Provides Opportunities and Challenges

Elizabeth Starrett
Publisher

Service-Oriented Architectures

4 CROSSTALK The Journal of Defense Software Engineering September 2007

Web services in SOAs allow applica-
tions to interact and data to be

interchanged without direct human
intervention. The use by Web services of
eXtensible Markup Language (XML),
SOAP (formerly Simple Object Access
Protocol), and related open standards
enables these interchanges to be
achieved over connections that are
established dynamically on an ad-hoc
basis.

Web service-based SOAs are prolif-
erating exponentially, both in number
and extent, in Department of Defense
(DoD) and other government agencies,
the private sector, and academia. Web
services are relied on to create, manipu-
late, and protect information, including
the most sensitive private information.
They are used to perform high-conse-
quence and mission-critical information-
handling functions.

The individual, software-intensive
Web services of which these SOAs are
composed are also growing larger and
more complex, to the extent that their
own developers can no longer fully rec-
ognize – let alone comprehend – all of
their possible behavioral states, weak-
nesses, and vulnerabilities.

At the same time, software-level
threats to Web services and portals to
SOAs are increasing in intensity, sophis-
tication, and variety. Zero-day vulnera-
bilities in commercial Web service soft-
ware products have not only been
proven to exist, they are on the rise. (A
zero-day vulnerability is one against
which an exploit is launched by an
attacker before a security patch can be
issued by the product’s developer.)

The security challenges presented by
the Web service processing model, in
which SOAP messages encapsulating
sensitive XML documents are forwarded
along complex chains of consumer,

provider, and intermediary Web ser-
vices, are formidable. This is because
many of the features that make Web ser-
vices and SOAs attractive – greater
accessibility of data, dynamic establish-
ment of interservice relationships and
communication paths, a high degree of
service autonomy, and a minimal
amount of direct human involvement –
are all at odds with traditional security
models and controls.

The nature of Web services and
SOAs makes them subject to unique
attacks, as well as variations (often
involving intensification) of familiar
attacks that already target Web servers
and applications. Achieving secure Web
service processing entails the extension
and augmentation of existing Web and
Internet security mechanisms. This is
increasingly achieved through the imple-
mentation of authentication, authoriza-
tion, trust, confidentiality, integrity, and
availability of functions based on rela-
tively new and still-emerging Web ser-
vices security standards.

NIST SP 800-95, Guide to
Secure Web Services
To help the architects, developers, and
engineers involved in the creation of
Web services and SOAs understand and
address the security challenges that con-
front them, the NIST is publishing a
new SP 800-95, Guide to Secure Web
Services. The current draft of SP 800-95
can be downloaded from the SP page of
the NIST Computer Security Resource
Center Web site: <http://csrc.nist.gov/
publications/nistpubs/>. The final ver-
sion will be published at this address
later this year.

The objective of this NIST SP is to
describe and make sense of the broad
range of Web service (WS) security stan-

dards that have been produced by the
Organization for the Advancement of
Structured Information Standards,
World Wide Web Consortium, Web
Services Interoperability Organization
(WS-I), the Liberty Alliance, and other
standards bodies. Because of this objec-
tive, the SP tends to focus on security
issues that are already being addressed
by these various standards bodies and
omits discussion of those security chal-
lenges that have not yet been acknowl-
edged by the standards community, or
that the community has deemed unimpor-
tant, out of scope, or too hard to address via
Web services security standards.

While SP 800-95 does describe how
to implement security functions and
protections for Web services and SOA
portals, it does so almost exclusively
from the point of view of what can be
achieved using technologies based on
current and emerging Web services
security standards.

Unsurprisingly, after providing back-
ground information on key Web services
and SOA concepts, capabilities, and
components, including discovery, mes-
saging, portals, coordination (choreogra-
phy and orchestration), and the roles,
modes, and properties of Web services,
the SP’s discussion is limited to what is
already widely accepted as constituting
Web services security: secure interservice
messaging, protection of XML-based
content, secure negotiation of contracts
between service providers, and estab-
lishment of trust relationships between
services.

For each of the security capabilities
and protections it introduces, the SP
describes the associated Web services
security standards. These standards are
organized into a stack (comparable to
the Open Systems Interconnect [OSI]
and Transport Control Protocol/

The Security of Web Services as Software
Karen Mercedes Goertzel

Booz Allen Hamilton

To help creators of Web services and Service-Oriented Architectures (SOAs) understand and address the security challenges
that confront them, the National Institute of Standards and Technology (NIST) is getting ready to publish a new Special
Publication (SP) 800-95, Guide to Secure Web Services. This SP describes Web service security standards and explains how
to develop Web services and SOA portals using technologies based on those standards. However, neither SP 800-95 nor the
standards it describes address a critical challenge: the security of Web services as software. Without considering software secu-
rity, developers cannot create Web services that are truly trustworthy. This article describes both the content of SP 800-95 and
highlights its critical omissions in terms of measures needed to produce Web service software that is in and of itself secure.

The Security of Web Services as Software

Internet Protocol network protocol
stacks). Within an SOA, the standards
are also frequently implemented within
core security services, i.e., security ser-
vices that other services depend on to
perform essential functions on their
behalf. The SP also describes the securi-
ty threats to Web services that protec-
tions and functions based on these stan-
dards are intended to address. These
functions and protections fall into eight
general categories:
1. Authentication and identity man-

agement. The SP addresses service-
to-service authentication and service,
and identity management and
authentication of human users who
access SOAs via Web portals.
Specific standards discussed include
WS-Security for interservice authen-
tication (including its security short-
comings), and Security Assertion
Markup Language (SAML) as the
basis for single sign-on by human
users.

2. Interservice trust. The SP address-
es trust establishment (based on
authenticated identity) between ser-
vices, and federation of trust across
SOA boundaries.

3. Secure service discovery. The SP
focuses on security for Universal
Description, Discovery and Integra-
tion (UDDI) and Web Service
Description Language (WSDL) inter-
faces, secure access to the SOA reg-
istry, secure interaction of Web por-
tals with the SOA discovery services,
and application programmatic inter-
faces (APIs) for secure service
inquiry and publishing.

4. Distributed authorization and
access management. The SP dis-
cusses the authorization of privileges
to Web services and the enforcement
of least privilege in SOA authoriza-
tion models. Specific standards dis-
cussed include SAML as the basis for
asserting privileges, eXtensible
Access Control Markup Language
(XACML) as the basis for service-
level access control, and the use of
XML schema and security metadata
for data/content-level access control.

5. Confidentiality and integrity of
service-to-service interchanges.
The SP discusses use of HyperText
Transport Protocol Secure (HTTPS)
for transport layer security in SOAs,
WS-Security for SOAP message-level
security, XML encryption and signa-
ture for content protection, and the
role of XML gateways in providing
additional message-level and content-

level integrity protection.
6. Accountability. The SP discusses

methods for achieving accountability
end-to-end throughout a Web service
chain, including audit in SOA environ-
ments and use of XML signatures as
the basis for non-repudiation of Web
service transactions.

7. Availability and quality of service
(QoS). The SP discusses availability
and QoS techniques such as fail-over,
handling of service deadlocks and ser-
vice recursion, and it addresses the
security implications of competing
reliable messaging standards.

8. Security policy specification. The
SP discusses WS-Policy and its role in
supporting specification and enforce-
ment of security policy within an
SOA.
Recognizing that standards are only

the basis for implementations, the SP
touches on tools and technologies for

implementing security standards-based
Web services, such as Web service-orient-
ed developer toolkits, XML parsers, pro-
cedural languages commonly used in Web
service development, XML, and tools and
techniques for testing the security of Web
services.

In this context, the SP also addresses
issues associated with secure Web service
enabling of legacy applications (e.g., pub-
lic-key enabling consistent with Web ser-
vices standards and implementing stan-
dards-based security functions and protec-
tions for legacy applications and databases
exposed as Web services).

Security of Web Services as
Software
Though SP 800-95 does cover imple-
mentation of Web services that are like-
ly to be called secure because they are

based on accepted Web services security
standards, the SP does not discuss what
is probably the most important security
issue in the implementation of Web ser-
vices – an issue that is not addressed by
any Web services security standard: The
security of Web services as software.

It can be argued that because Web
services are subject to the same security
issues as all software, and particularly
network-based application software, no
discussion of the topic was needed in
NIST’s Web services security guidance.
Indeed, NIST excluded such a discus-
sion as out of scope exactly because the
need for software security is not unique
to Web services.

This is an interesting position for
NIST to take, given that one can argue
equally that requirements for confiden-
tiality, integrity, availability, authentica-
tion, trust, identity management, etc., are
not unique to Web services either.
Moreover, in several cases the standards
that are being used to address these
requirements were never intended to be
exclusive to Web services. For example,
XML digital signature and encryption
are intended for use with all XML docu-
ments, not just those exchanged
between Web services. SAML and
XACML, while certainly used to imple-
ment authentication and access control
in Web service implementations, are
intended to be widely applicable to all
types of applications.

Threats to Web Service Software
What Web service software does share
with other software is its exposure to
threats throughout its lifetime, not just
after it has been deployed, but also while
it is under development. Threats to soft-
ware in development may be intentional,
coming from malicious developers who
subvert or sabotage the software they or
their colleagues build, or they may be
unintentional, introduced by developers
who, due to ignorance, carelessness, or
pressure to get the software out on time
fail to implement checks and controls
that would eliminate or minimize expo-
sure of the software’s numerous weak-
nesses and vulnerabilities.

Compounding this problem is the
almost universal use of commercial and
open source software components in the
building of Web services. The pedigree
of such components is often a mystery.
Neither the processes used to develop
those components, nor the security
properties, weaknesses, and vulnerabili-
ties of the components themselves are
ever investigated by the developers who

September 2007 www.stsc.hill.af.mil 5

“What Web service
software does share

with other software is
its exposure to threats
throughout its lifetime,

not just after it has
been deployed, but
while it is still under

development.”

Service-Oriented Architectures

6 CROSSTALK The Journal of Defense Software Engineering September 2007

incorporate those components into their
Web services. Even pedigree of open
source components is taken entirely on
faith. Just because open source code is
available for review does not mean that
anyone actually does code reviews of
open source code.

Specific threats to Web services
under development fall into two general
categories: 1) malicious code, and 2)
exploitation of weaknesses and vulnera-
bilities.
1. Malicious code. Logic bombs, time

bombs, Trojan horses, worms, and
other undocumented malicious func-
tions are intentionally inserted into
the source code or appended to the
binary executable by the developer.
Failure to review source code and
carefully observe the behavior of
executing binary code means that
such embedded malicious code will
be allowed to remain in software
when it is deployed. Furthermore,
malicious code may be added by an
attacker who intercepts and tampers
with electronically distributed exe-
cutables. After the software is
deployed, it is subject to the delivery
of new malicious code or the execu-
tion of embedded malicious code.
The risk of malicious code insertions
and executions is increased when the
software and its environment are not
configured insecurely, and anti-mali-
cious code countermeasures are not
deployed or used effectively.

2. Exploitable weaknesses and vul-
nerabilities. Flaws, defects, errors,
and faults are often included, usually
unintentionally but sometimes inten-
tionally, in the artifacts – specification,
architecture, design, or implementa-
tion – of the Web service. In some
cases, these can be intentionally lever-
aged by attackers (or by malicious soft-
ware processes acting on an attacker’s
behalf) to compromise the security of
the Web service itself or of the data it
handles.
Weaknesses originate as early as the

requirements phase. Security-related
requirements may be overlooked or
misstated, or spurious requirements
may be included. They may arise as the
result of poor architecture or design
choices, such as failure to enforce least
privilege or to design in redundancy of
critical processes.

Vulnerabilities may enter software
during its implementation, due to use
of non-secure implementation prac-
tices. Examples of such practices
include: accepting user input without

first validating it; using vulnerable
technologies (e.g., SOAP over unen-
crypted, unauthenticated HTTP con-
nections); use of non-secure pro-
gramming languages (e.g., non-type-
safe languages used without input
validation) and library functions (e.g.,
buffer overflow-prone C functions
such as printf); use of non-secure
development tools (e.g., compilers
that do not perform bounds check-
ing); reuse of vulnerable compo-
nents (e.g., commercial software that
has known vulnerabilities); use of
development tools (e.g., compilers
that do not perform bounds check-
ing); or reuse of vulnerable compo-
nents (e.g., commercial software that
has known vulnerabilities).

Weaknesses and vulnerabilities may
be allowed to remain in software due
to the failure to perform adequate
security reviews, assessments, and
tests of the artifacts of the develop-
ment process (from specifications
through the software itself); or the
intentional tampering with the results
of such reviews/assessments/tests.

They may also be allowed to remain
in the form of back doors and trap-
doors that are not removed prior to
software distribution. They may arise
or fail to be mitigated due to specifi-
cation of non-secure configuration
parameters for the software and its
environment (or the use of non-
secure installation procedures,
scripts, and tools).
Once the Web service is operational,

it is subjected to misuse by its intended
users, and abuse by attackers.
Understanding the attack patterns to
which Web services are likely to be sub-
ject can be extremely helpful to the
developer in specifying security require-
ments, architectural characteristics, and
design properties that can reduce a ser-
vice’s exposure and vulnerability to like-
ly attack patterns. Moreover, such under-
standing provides a basis for defining
the code assessment criteria and security
test plans for developmental and non-
developmental Web service software
components (i.e., attack surface defini-
tions highlight specific targeted security
flaws to look for during code reviews;
misuse and abuse cases can be elaborat-
ed into white-box and black-box test
scenarios).

Exploits Against Web Services
The exploits, or attacks, that target exist-
ing Web services fall into two main cate-
gories: direct and indirect. Direct attacks

exploit known or suspected vulnerabili-
ties and weaknesses in the Web service
itself, while indirect attacks may target
the service's interface with the environ-
ment and middleware components on
which it relies, or its interface with the
external services and applications with
which it interacts.

Attacks against Web services have
one of three general objectives:
1. Disclosure. This may be achieved

through reconnaissance attacks that
discover or reveal Web service vul-
nerabilities that can be exploited by
other attack patterns. It may also be
accomplished through attacks that
bypass or cause denial of service in
the Web service so as to directly
access and disclose the sensitive/pri-
vate data handled by that service.

2. Subversion. This includes subver-
sion of the service’s functionality
(i.e., by direct tampering, malicious
code insertion/delivery, command
injection, tampering with the state of
the service’s execution environment,
and intentional triggering of errors
or faults at the service boundary with
its environment), of its data, or of its
security assumptions about other
services (i.e., by an attacker or mali-
cious process masquerading as an
entity or hijacking an entity that is
trusted by the service, and thereby
escalating its own privileges to match
those of the trusted entity). It also
includes attacks that bypass or cause
denial of service in the service in
order to directly access or tamper
with the data the service handles.

3. Sabotage. This may be achieved
through denial-of-service attacks on
the service itself, or on the external
entities on which it depends for its
dependable, secure operation (e.g.,
execution environment and network
components, core security services,
and defense-in-depth protections).
An objective of sabotage is often to
bring down or bypass the targeted
software in order to directly access
the data in control.

Particular Security Challenges for
Web Services in SOAs
Some security challenges are unique to
Web service software, and others are
greatly exacerbated when they arise in
Web service software. The chains of
dependencies between autonomous,
dynamically invoked Web services with-
in SOAs are often much more complex
than when autonomous software com-
ponents are used in more traditionally

The Security of Web Services as Software

distributed processing models. In most
distributed systems, the list of compo-
nents that will be invoked, and the order
in which they will be invoked, in the
course of completing a particular trans-
action or task is predefined, as to a great
extent are the outputs of the invoked
components. In an SOA in which ser-
vices are dynamically coordinated
(through choreography or orchestra-
tion), it is frequently impossible to pre-
dict in advance which services will be
invoked by other services, and in what
order those invocations will take place.
In dynamic coordinations that cross the
boundaries from one trust domain to
invoke services in another trust domain,
it is especially hard to establish valid
security assumptions in advance about
the behaviors, policies, and permissions
expected by the services in the remote
domain. If a fault in a Web service caus-
es that service to violate expected
behavior or policy, the results of such a
violation have the potential to propagate
throughout the entire chain of services.
Because that chain is unpredictable
(being dynamically established rather
than pre-defined), the propagation and
impact of the violation will also be
unpredictable. The result of a fault in
one Web service, then, may compromise
the security and dependability of other
Web services much further along the
chain, which may make forensic analysis
to identify the true source of the com-
promise and to trace all the possible
branches of its progress extremely diffi-
cult (if not impossible).

Moreover, in SOA implementations,
each service is inherently dependent on
other autonomous services. The increas-
ingly widespread use of what are termed
core security services model means that
many innately non-secure Web services
depend on other services for critical
security protections and capabilities.
Their role as security service providers
means that these core services are not
only the most critical services in the
SOA, but represent the highest-value
targets to attackers.

Even when provided via core securi-
ty services, the SOA’s security functions
and protections are often actually imple-
mented using the security functions and
protections provided by the underlying
application framework, e.g., Java Enter-
prise Edition or .NET. This increases
the risk that consumer Web services not
based on the same framework technolo-
gies may not interoperate seamlessly
with the core security services. The cen-
tralization of the SOA’s security func-

tions into a set of core services increas-
es the imperative to ensure that such ser-
vices, which will be trusted to guarantee
the entire SOA’s security posture, will be
able to resist or tolerate attacks and to
continue operating reliably under hostile
conditions. If such software contains
weaknesses and vulnerabilities that can
be exploited by attackers, this model col-
lapses due to the misplacement of trust
in components that are too vulnerable to
perform their designated tasks.

A number of other factors unique to
Web services and SOAs make their soft-
ware components more vulnerable to
software-level exploits than other types
of application software. First and fore-
most among these are the following:
1. The woefully inaccurate assumption

that Web service interfaces will be
used only as intended by other Web
services, and not by human beings or

malicious processes. Because Web
services generally have no direct
human interfaces, their operation
receives little if any human scrutiny
or intervention ... except by attackers.

2. The unavoidable fact that by expos-
ing Web services applications and
databases that were never originally
intended for direct public access, the
weaknesses and vulnerabilities of
those applications and databases are
also exposed to public view.
Moreover, the easy-to-use develop-
ment tools used by many Web ser-

vices developers obscure the services’
low-level functionality from the
developer; it is these low-level func-
tions that often contain the
exploitable weaknesses and vulnera-
bilities that are targeted by attackers
and malicious code. For example,
Apache Axis 2 enables a Java devel-
oper to simply load his/her Java
objects into the Axis SOAP engine.
At runtime, it is the SOAP engine
that determines which incoming
SOAP request messages should be
routed to which Java objects. The
SOAP engine then translates those
requests into standard Java function
calls and routes them appropriately.
Unless he/she has expressly reviewed
the source code of the Axis SOAP
engine, he/she will have no idea
whether its routing or translation
functions contain embedded mali-
cious logic that could result in incor-
rect routing of messages or incor-
rectly generated Java calls. In the case
of a commercial tool, such as Visual
Studio, the ability to review the tool’s
source code is not even an option.
Automatic discovery of Web services

in particular is a feature of SOAs that
makes it easier for attackers to locate and
access potential targets. Publishing of
repository entries about services through
standard discovery interfaces (WSDL and
UDDI) represents an unprecedented level
of public disclosure of service processing
details – details that can be used by recon-
naissance attackers to craft much more
effective attacks on the discovered ser-
vices. Moreover, to accomplish automatic
service discovery, privileges must be
granted to unknown entities outside the
organization that owns the services being
discovered. There is a significant question
as to the extent that entities outside the
SOA, which interact with services discov-
ered inside the SOA, can be governed by
the policies (including security policies)
enforced for that SOA.

For example, Organization #1, which
operates SOA #1, may mandate that all
Web service software must undergo code
review and penetration testing before
being deployed. Organization #2, which
operates SOA #2, may have no such poli-
cy. So, if SOA #1 establishes a federated
trust relationship with SOA #2, there is
no way for Organization #1 to know
whether the Web services in SOA #2 con-
tain exploitable faults or malicious logic.
Trust, as it is defined for Web services,
(e.g., WS-Trust) refers solely to the assur-
ance that a given service’s identity has
been authenticated by a trusted third

September 2007 www.stsc.hill.af.mil 7

“Understanding the
attack patterns to

which Web services are
likely to be subject can
be extremely helpful to

the developer in
specifying security

requirements,
architectural

characteristics, and
design properties that
can reduce a service’s

exposure ... ”

Service-Oriented Architectures

8 CROSSTALK The Journal of Defense Software Engineering September 2007

party. By this definition, trust has nothing
to do with the authenticated service’s
trustworthiness. The non-malicious func-
tioning and behavior of the service must
be taken entirely on faith.

Finally, all of the security problems
associated with component-based soft-
ware systems are also present in service
choreographies and orchestrations, and
furthermore, exacerbated by the increas-
ingly dynamic nature of service compos-
ability. While security assumptions about
individual services may be derived from
the services’ WSDL descriptions, and
when services are combined in ways that
differ from transaction to transaction, it
is virtually impossible to establish (1)
whether the security assumptions about a
given service are still valid and meaning-
ful when that service is instantiated with-
in a given choreography/orchestration,
and (2) whether there are any irresolvable
security conflicts between services that
are dynamically composed into a chore-
ography or orchestration.

It is true that some features of Web
service technology actually help miti-
gate security issues found in other types
of software. Most notably, the reliance
of Web services on platform-indepen-
dent, standards-based APIs such as
WSDL and SOAP, rather than using
proprietary and/or platform-specific
APIs, makes it easier to replace vulnera-
ble Web services quickly with less vul-
nerable substitutes. Use of standard
APIs also enables diversity of service
implementations – a secure design prin-
ciple that, when coupled with redundan-
cy of services, reduces risk by reducing
the number of services that will be
compromised by an attack pattern tai-
lored to exploit a specific vulnerability
in a particular Web service implementa-
tion (or product). The result is an
improvement in availability because the
alternate services are unlikely to be sus-
ceptible to the same implementation-
specific attack patterns that compro-
mised the services they back up.

Building Secure Web Service
Software
What can be done to make Web service
software trustworthy? In practical terms,
trustworthiness will be achieved by pro-
ducing a Web service that is dependable,
not only under both expected operating
conditions but also under unexpected and
intentionally hostile operating conditions.
It is this dependability under unexpected
hostile conditions that constitutes soft-
ware security.

In practical terms, intentionally hostile
operating conditions are created either by
the presence of attack patterns or the
behaviors that result from execution of
malicious code. To continue operating
dependably, then, a Web service must be
designed and implemented so that it is
able to do the following:
• Recognize and resist or block most

attack patterns and malicious behaviors.
• Tolerate and safely handle the errors

and failures that result from those
attacks and malicious behaviors it can-
not resist or block.

• Exhibit resilience by isolating and con-
straining the damage and recovering
quickly (to an acceptable level of capa-
bility) from successful attacks and
malicious behaviors.

Furthermore, to be deemed trustwor-
thy, Web service software must not only
exhibit the properties that constitute
dependability and security, but also those
that constitute assurability, which is the
ability to independently verify the soft-
ware’s other required properties. The
properties that constitute software
dependability are correctness and pre-
dictable execution (i.e., the software does
what it is supposed to do and nothing
else), and in some cases safety. (Software
safety is defined in the National Aeronau-
tics and Space Administration Software
Assurance Glossary <http://sw-assuran
ce.gsfc.nasa.gov/help/glossary.php> as
the systematic identification, analysis,
tracking, mitigation, and control of soft-
ware hazards and hazardous functions,
hazards being existing or potential condi-
tions or functions that can contribute to
or result in mishaps or accidents. Software
safety does not concern itself with pre-
venting intentionally induced incidents,
even though such an incident could result
in a mishap or accident.)

The properties that constitute soft-

ware security are integrity (inability to sub-
vert) and availability (inability to sabotage),
and for Web services, accountability of the
service as a non-human actor in a SOA
(which includes non-repudiation by the ser-
vice of its actions). In many cases, confi-
dentiality of the software itself is also a
desirable security property: The software’s
executable and/or operational behaviors
may be hidden and/or obfuscated to make
reconnaissance and disclosure of vulnera-
bilities difficult.

The properties that promote assurabil-
ity include the following: simplicity (of
design and implementation), smallness (of
code), and traceability (of implementation
to requirements).

In practical terms, a Web service can
be said to be secure when it achieves the
following:
1. The behavior of the service itself

(including its behavioral state changes
in response to inputs and external
events) does not make the service vul-
nerable to attack or malicious code
insertion/execution. This means the
service must handle all inputs safely,
validating them before use and reject-
ing or modifying (to make acceptable)
those that threaten its secure behavior.
It also means that the service must
handle errors, exceptions, faults, and
failures safely and securely, so that
these events do not cause the software
to enter an insecure state or compro-
mise the data and resources to which it
has access.

2. The service’s interactions and inter-
faces must be secure. This includes
those used among the service soft-
ware’s constituent components, e.g.,
remote procedure calls, and those used
between the service and any external
entities, including other Web services
(e.g., SOAP over HTTPS with WS-
Security), environment-level compo-
nents (i.e., APIs, call-level interfaces),
and human users (i.e., user interfaces).

3. The service is executable and data files
in the file system must be protected
from unauthorized access. This means
that the configuration parameters of
the service itself and of its execution
environment protections must be as
restrictive as possible.

4. The service’s attack surface must be
minimized. If this has not been
achieved by reducing the number of
vulnerabilities in the service itself
(both at the architectural and software
levels), it might be achievable through
defense-in-depth measures that mini-
mize the exposure of the vulnerabili-
ties that were not eliminated.

“ ... intentionally hostile
operating conditions are

created either by the
presence of attack

patterns or the
behaviors that result

from execution of
malicious code.”

The Security of Web Services as Software

September 2007 www.stsc.hill.af.mil 9

About the Author

Karen Mercedes
Goertzel is a software
security subject-matter
expert supporting the
Director of the DHS
Software Assurance

Program and has provided similar sup-
port to the DoD’s Software Assurance
Tiger Team. From 2002-2004 she was
project manager of the DISA
Application Security Support Task and is
currently leading the team developing
NIST Special Publication 800-95, Guide
to Secure Web Services. In addition to soft-
ware assurance and application security,
Goertzel has extensive expertise and
experience in trusted systems and cross-
domain information sharing solutions
and architectures, information assurance
(IA) and cybersecurity architecture, strat-
egy and planning, risk management, and
mission assurance. She has written and
spoken extensively on software security
and IA topics, both in the U.S. and
abroad.

Booz Allen Hamilton
8283 Greensboro DR H5061
McLean,VA 22102
Phone: (703) 902-6981
Fax: (703) 902-3537
E-mail: goertzel_karen@bah.com

COMING EVENTS

October 2-4
STPCON 2007 Software Test and

Performance Conference
Boston, MA

www.stpcon.com

October 16-17
ICSQ ’07International Conference on

Software Quality
Denver-Lakewood, CO

www.asq.org/conferences/software
-icsq-2007/index.html

October 22-25
10th Annual Systems

Engineering Conference
San Diego, CA
www.ndia.org

October 22-26

STARWEST 2007
Software Testing Analysis and Review

Anaheim, CA
www.sqe.com/StarWest/

October 29-30
VERIFY 2007

Crystal City, VA
http://verifyconference.com

November 4-7
AYE 2007

Amplifying Your Effectiveness
Phoenix, AZ

www.ayeconference.com

May 2008

Systems and Software
Technology Conference
www.sstc-online.org

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

Conclusion
While NIST’s new SP 800-95, Guide to
Secure Web Services, should prove helpful in
increasing Web service implementers’
knowledge and understanding of the
security standards being adopted to secure
service-to-service interactions within dis-
tributed SOA-based information systems,
the SP does not discuss methods and
techniques for design and implementation
of secure Web service software. This leaves
it up to the Web service developer to find
that type of information elsewhere.

A good place for developers to start
looking is the Department of Homeland
Security’s (DHS’) BuildSecurityIn Web
portal at <https://buildsecurityin.us-cert.
gov/>. The resources here provide a
broad range of recommendations on how
Web service developers can add security
principles and practices to their existing
software processes so that the software
produced by those processes will not only
perform its required security functions,
but will exhibit the levels of attack-resis-
tance, attack-tolerance, and attack-
resilience required to minimize its attack
surface and susceptibility to malicious
code penetrations and executions.

Recently, the Defense Information
Systems Agency (DISA) published a
Security Technical Implementation Guide
entitled Application Security and Devel-
opment Security. This can be downloaded
at <http://iase.disa.mil/stigs/stig/asd
-stig.pdf>.u

Project Tracking
April 2008

mission Deadline: November 16, 2007

Software Safety
May 2008

bmission Deadline: December 6, 2007

Information Assurance
June 2008

ubmission Deadline: January 18, 2008

Ple ssTalk, available on the Internet at
<www.stsc.hill. ssions on all software-related topics at any time,

along with Letters to the Editor and BackTalk. Also, we now provide a link to each monthly theme, giving
greater detail on the types of articles we're looking for <www.stsc.hill.af.mil/crosstalk/theme.html>.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

ent upcoming theme issues. Below is the submittal schedule
s we are looking for:

10 CROSSTALK The Journal of Defense Software Engineering September 2007

Acornerstone of DoD policy for
future software and systems policy is

the migration of systems to net-centric
operations. The net-centric vision requires
the leveraging of a highly flexible set of
capabilities that can be composed quickly
and flexibly into applications that take
advantage of the interoperable aspects of
the web and provide effective mission
value. Among current technologies, SOA
has the greatest potential for implement-
ing this vision.

However, there is a great deal of con-
fusion about what SOA is, whether it is
real, and what it takes to implement a
SOA-based system. This article provides a
high-level introduction to SOA, and then
outlines how a DoD organization can
develop an effective strategy for imple-
menting the vision.

Basic SOA Concepts
SOA has become an increasingly popular
mechanism for achieving interoperability
between systems. It is a way of designing
systems composed of services that are
invoked in a standard way. Common goals
for the adoption of SOA are to eliminate
redundancy, assemble new functionality
from existing services, adapt systems to
changing needs, and leverage legacy
investments. An SOA-based system is
composed of the following:
• Services: These are reusable compo-

nents that represent business or mis-
sion tasks, such as customer lookup,
weather, sensor placement, account
lookup, or credit card validation.
Services can be globally distributed
across organizations and reconfigured
to support new tasks or missions.
They are reusable because they can be
utilized by many business processes or
mission threads. They usually provide
coarse-grained functionality, such as
customer lookup as opposed to finer-
grained functionality such as customer
address lookup.

• Service consumers: These are clients

for the functionality provided by the
services, such as end-user applications,
systems, or even other services.

• SOA infrastructure: The infrastruc-
ture connects service consumers to
services. It usually implements a loose-
ly coupled, synchronous or asynchro-
nous, message-based communication
model, but other mechanisms are pos-
sible. The infrastructure often con-
tains elements to support service dis-
covery, security, and other operations.
A common SOA infrastructure is an
Enterprise Service Bus (ESB) to sup-
port Web Service environments. The
Army’s System of Systems Common
Operating Environment and Defense
Information Systems Agency’s Net-
Centric Enterprise Services are two
examples of SOA infrastructures
within DoD.
The benefits of SOA can be signifi-

cant. However, SOA implementation is a
complex engineering task and requires
careful attention to engineering issues as
well as to the four pillars for SOA success
that are presented in this article.

Pillars for Successful SOA-
Based Systems Development
It is common to view SOA-based systems
development as a technical problem with
a technical solution. However, successful
SOA-based systems development requires
attention to four pillars as illustrated in
Figure 1:
• Alignment with mission and business

goals.
• Instantiation of principles of SOA

governance.
• Evaluation of relevant technologies

for SOA implementation.
• Recognition that SOA requires a dif-

ferent mindset than traditional devel-
opment.

Strategic Alignment
The first pillar, Strategic Alignment, focuses
SOA decision-making on mission and

business priorities rather than the avail-
ability of vendor products, or preferences
of individuals down the chain of com-
mand. If the wrong strategy is selected, it
can result in an expensive collection of
random services that are never used. A
successful SOA strategy includes the fol-
lowing:
• Evidence of fulfillment of critical

business goals.
• Alignment with organizational enter-

prise architecture and current and
future Information Technology (IT)
infrastructure.

• Realistic choices of technologies and
infrastructures.

• Realistic and gradual adoption strate-
gy.

• Adequate SOA governance structure.
• Priorities for implementation.
• Reuse strategy across internal and

external organizations.
These issues can be addressed through

activities that provide a focus to the SOA
implementation, the overall business plan,
identification of high priority business
processes, and disciplined SOA adoption.

Focus to SOA Implementation
The high-level mission and business goals
need to dictate the focus of an SOA
implementation. As an example, four dif-
ferent high-level goals can lead to four
different SOA strategies:
• An SOA-based system to support a

battlefield will have critical needs to
ensure performance, availability, and
security.

• Increasing information available to
stakeholders will focus on intuitive
portals and creation of services relat-
ed to information that is important to
stakeholders.

• Integrating new partners will focus on
a flexible SOA infrastructure, a very
well-described service repository, and
clear guidelines for composition.

• Maximizing security may lead to a pro-
prietary SOA infrastructure.

Four Pillars of Service-Oriented Architecture

Among current technologies, Service-Oriented Architecture (SOA) has the greatest potential for implementing the vision of
migration to net-centric operations. While SOA has been successful in many cases, it has also been marked by a number of
expensive failures. This article outlines four pillars to SOA success that include the following: developing an appropriate SOA
strategy, implementing effective SOA governance, making sound technology assessments, and accounting for the fact that SOA
requires a different mindset. As a result, the article proposes how a Department of Defense (DoD) organization can devel-
op and implement an effective strategy for SOA implementation.

Grace A. Lewis and Dr. Dennis B. Smith
Carnegie Mellon University, Software Engineering Institute

Four Pillars of Service-Oriented Architecture

Overall Business Plan
At a high level, there is recognition that
SOA can provide agility, adaptability,
legacy leverage, and integration with
business partners. Current work has iden-
tified the business value of SOA for E-
Commerce [1], E-Services, banking, and
on-line services. In order to determine
the amount of investment required and
the projected payoff, an economic analy-
sis needs to be planned at the beginning
of an SOA implementation to identify
the following:
• What constitutes a success within the

context of a specific SOA implemen-
tation?

• How is return on investment mea-
sured?

• What are the resulting savings of SOA
implementation (e.g. infrastructure
consolidation, server and application
virtualization, reuse of services, busi-
ness agility)?

Identification of High Priority
Business Processes
Any organization has many potential busi-
ness process tasks that are candidates for
services. Services are identified through a
top-down analysis of business and mis-
sion processes, a bottom-up legacy system
inventory, or a combination of the two.
High-priority services are selected based
on their relationship to critical goals.
Traditional business process modeling,
business process analysis, and business
process reengineering techniques can help
to model business processes and identify
areas where services may be valuable.
Although these methods will not model
services, they suggest a starting point for
setting priorities. Some of these approach-
es include the following:
• Enterprise architecture – analyzes bus-

iness goals, what the business does, the
type of information needed, and how
the business uses IT to meet its goals.

• Business process analysis – models the
business and its relationship to the
external environment. This is an
approach for identifying business
processes that are candidates to
become services.

• Business process modeling – analyzes
and optimizes business processes to
optimize current performance. This
can provide details on the modeling of
specific processes once they have been
identified as candidates.

• Business process reengineering – ana-
lyzes current business processes and
changes these processes, often in a
radical way, to meet new business
needs.

Disciplined SOA Adoption
An SOA implementation can start with a
big bang approach that attempts to get SOA
implemented at once throughout an enter-
prise. However, it is more prudent to
begin with a pilot project that will provide
a proof of concept. Pilot projects should
focus on areas that provide high impact
and visibility with the lowest risk. Gradual
implementation can then lead to other
projects that integrate a single organiza-
tional unit, to projects that integrate mul-
tiple business units, and later to large scale
efforts that provide a virtual enterprise
where all applications are built based on
services [2].

SOA Governance
Governance has been rated as the main
inhibitor of SOA adoption [3]. SOA gover-
nance provides a set of policies, rules, and
enforcement mechanisms for developing,
using, and evolving SOA-based systems,
and for analysis of their business value.
SOA governance includes policies, proce-
dures, roles, and responsibilities for design-
time governance and runtime governance.

Design-time governance includes ele-
ments such as rules for strategic identifica-
tion of services, development, and deploy-
ment of services, reuse, and legacy system
migration to services. It also enforces con-
sistency in use of standards, SOA infra-
structure, and processes.

Runtime governance develops and
enforces rules to ensure that services are
executed only in ways that are legal.
Runtime governance procedures address
concerns such as 1) access to applications
and data, 2) the replacement of services,
and 3) consistent interactions with the SOA

infrastructure.
Service-level agreements (SLAs) also

fall under runtime governance. SLAs can
include runtime validation of contractual
specifications on performance, throughput,
and availability; the use of automated met-
rics for tracking and reporting; and prob-
lem management.

A well-defined governance model
needs to answer such questions as the fol-
lowing:
• What is the process for determining

what services to create?
• What is the process for evolving and

changing services if there are many
consumers of the service?

• Many services can be common across
several lines of business in an enter-
prise. Who owns these common ser-
vices?

• Who owns the actual data if more than
one service is using it?

• What is the resolution mechanism if
there are conflicting requirements or
change requests for shared services?

• What happens if the same (or similar)
service is being developed by more than
one service provider?

• What mechanisms, tools and policies
are used for maintaining and monitor-
ing deployed services?

• How are enterprise-wide policies
enforced across various services both
internally as well as externally to the
organization?

• Who owns and maintains the shared
repository of services in an organiza-
tion?

• How are SLAs defined and enforced
between service consumers and
providers?

September 2007 www.stsc.hill.af.mil 11
CContext

SOA-Based Systems

Development

SOA Design PrinciplesA

C
h

a
n

g
e

o
f

M
in

d
s
e

t

T
e

c
h

n
o

lo
g

y

E
v
a

lu
a

t
io

n

S
O

A

G
o

v
e

r
n

a
n

c
e

S
t
r
a

t
e

g
ic

A
lig

n
m

e
n

t

Figure 1: Pillars of SOA-Based Systems Development

Service-Oriented Architectures

12 CROSSTALK The Journal of Defense Software Engineering September 2007

Technology Evaluation
Because an SOA implementation may use
a number of technologies in novel con-
texts, it is important to evaluate whether a
specific set of technologies is appropriate
for the task at hand. Pillar 3 requires deter-
mining the fitness of a technology within
a specific context before making a long
term commitment to it. In adopting an
SOA-based systems approach, a number
of different technologies, standards and
tools may be part of an implementation.
Examples of these different technologies
can involve specific web service standards,
versions and tool implementations, cus-

tom infrastructures, ESBs, interfaces to
specific databases, and language bindings.

It is easy to draw a slide showing how
the pieces can fit together at an abstract
level. However, all technologies work well
within a specific context and under certain
conditions. For example, Web services
work well for asynchronous communica-
tion over the Internet. In a business envi-
ronment these conditions are very com-
mon, but in a military tactical command
and control environment this might not
be the case because of high performance
and availability requirements.

One way to perform this type of
analysis is through a light weight evalua-
tion method such as T-Checks [4, 5].
Other approaches can be used; however,
the approach should enable a hands-on
contextual analysis. The T-Checks
approach is illustrated in Figure 2 and can
be summarized in terms of the following
steps:
• Identify technology requirements and

context. Determine and document
why the organization wishes to con-
duct the evaluation, what the expecta-
tions and concerns are with respect to
the technology capabilities, and what is
the context in which the technology
plans on being used. Determine the
environment in which the evaluation
will take place, including expectations
and constraints of the technology and
measures of success.

• Develop hypotheses that are derived
from the expectations placed on the
technology. Hypotheses are claims
about the technologies that are to be
sustained or refuted.

• Develop criteria to determine if the
results sustain or refute a hypothesis.
Criteria are stated as a clearly measur-
able statement of capability. Each
hypothesis can have one or more crite-
ria, depending on the breadth covered
by the hypothesis.

• Design and implement the experimen-
tal solution which is the simplest set of
applications and/or components that
are able to answer the questions posed

by the hypotheses and associated crite-
ria, within a given scenario. The exper-
imental solution is implemented, run,
and observed, until there is enough
information to sustain or refute the set
of hypotheses.

• Evaluate the solution against criteria in
order to make a decision with respect
to the fitness of the technology for the
context in which it is intended to be
used. Based on the results of the eval-
uation there should be enough infor-
mation to decide if it is the following:
° A good fit with requirements.
° Not a good fit with requirements.
° Has some mismatches that could

potentially be solved by modifying
the context or modifying the tech-
nology itself.

Awareness of a Different
Mindset
There are a unique set of challenges in
building SOA-based systems. These chal-
lenges require a different development
approach that deals with the characteris-
tics of SOA-based systems. Although it is
difficult to generalize, some of the con-
trasts of SOA systems versus traditional
systems are presented in Table 1.

These differences impact the way soft-
ware is developed throughout the life
cycle:
• During requirements, it is important to

have close ties to business process
modeling and analysis. In addition,
there is the need to anticipate potential
service requirements from unknown
consumers.

• During architecture and design, it is
important to have technology evalua-
tions and to perform explicit trade-off
analyses.

• Implementation decisions will be
impacted by emerging standards and
may require simulation of the deploy-
ment environment.

• Testing requires a strong emphasis on
exception handling and requires all test
instances of services are available.

• Maintenance requires more sophisti-
cated impact analyses and greater
coordination of release cycles.
Because SOA implementation requires

a different mindset than traditional soft-
ware development and acquisition, it is
important to develop an overall transition
strategy to address how to acquire the new
skills that may be required through train-
ing personnel, hiring new staff, or bringing
in external experts. In addition SOA
merges the technical and business worlds;
therefore, it is important to have expertise

D

Hy s

Develop

Crit ria

De ig a d

Implemen So u on

n

AgAg t

[Hypotheses Sustained] [Hypotheses Refuted]

CContext

or Technology Evaluation

ystems Development SOA-Based Systems Development

g between system Loose coupling between applications and

services

ntics at design time Semantics ideally enable dynamic

discovery and execution of services

users and usage patterns Potentially unknown service users and

usage patterns

onents all within the same Multiple organizations providing and

supporting system components

SOA Design PrinciplesA

Figure 2: T-Checks Approach for Technology
Evaluation

D

Hy s

Develop

Crit ria

De ig a d

Implemen So u on

n

AgAg t

[Hypotheses Sustained] [Hypotheses Refuted]

CContext

ig. 2. T-Checks Approach for Technology Evaluation

Traditional Systems Development SOA-Based Systems Development

Tight coupling between system

components

Loose coupling between applications and

services

Shared semantics at design time Semantics ideally enable dynamic

discovery and execution of services

Known set of users and usage patterns Potentially unknown service users and

usage patterns

System components all within the same

organization

Multiple organizations providing and

supporting system components

Development

SOA Design PrinciplesA

C
h

a
n

g
e

o
f

M
in

d
s
e

t

T
e

c
h

n
o

lo
g

y

E
v
a

lu
a

t
io

n

S
O

A

G
o

v
e

r
n

a
n

c
e

S
t
r
a

t
e

g
ic

A
lig

n
m

e
n

t

Table 1: Some Differences Between Traditional Systems Development and SOA-Based Systems
Development

in both fields. The fact that SOA imple-
mentations have the potential of crossing
the enterprise also suggests the need for
developing a perspective that spans the
concerns of the entire enterprise, rather
than just the issues of a specific program
or business unit. As discussed in the sec-
tion Disciplined SOA Adoption, a gradual
adoption process that starts with small
scale pilots and expands gradually is also
recommended.

Conclusions
The SOA approach offers real value for
DoD organizations as a technology for
migrating toward net-centric operations.
However, the rhetoric surrounding SOA
can often be confusing and misleading.
Establishing an effective SOA approach is
a complex acquisition, management and
technical task. It requires the following:
• Alignment with mission and business

goals.
• Instantiation of principles of SOA

governance.
• Evaluation of relevant technologies

for SOA implementation.
• Recognition that SOA requires a dif-

ferent mindset than traditional devel-
opment.u

References
1. Tilley, S., et al. “On the Business Value

and Technical Challenges of Adopting
Web Services.” Journal of Software
Maintenance and Evolution 16 (2004):
16, 31-50.

2. Schulte, R. “Meeting the Challenges of
SOA Adoption.” SOA in Action
Virtual Conference, Nov. 2006.

3. “SOA Trend Survey.” InfoWorld 2006.
4. Lewis, G., and L. Wrage. “A Process

for Context-Based Technology Eval-
uation.” Technical Note CMU/SEI-
2005-TN-025. CMU/SEI, 2005.

5. Lewis, G., and L. Wrage. “Model Prob-
lems in Technologies for Interopera-
bility: Web Services.” Technical Note
CMU/SEI-2006-TN-021. CMU/SEI,
2006.

Four Pillars of Service-Oriented Architecture

September 2007 www.stsc.hill.af.mil 13

About the Authors

Dennis B. Smith, Ph.D.,
is a senior member of the
technical staff and is lead
of the Integration of
Software-Intensive Sys-
tems initiative at the SEI.

This initiative focuses on developing and
applying methods, tools, and technolo-
gies that enhance the effectiveness of
complex networked systems and systems
of systems. Smith has been involved with
working with DoD organizations in
developing an SOA capability, including
issues of SOA strategy, governance and
migration of legacy assets to SOA. He
was the co-editor of the Institute of
Electrical and Electronics Engineers and
International Organization for Standar-
dization-recommended practice on
Computer-Aided Software Engineering
Adoption, and has been general chair of
two international conferences. Smith
holds a masters degree and doctorate
from Princeton University, and a bache-
lor’s degree from Columbia University.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213
Phone: (412) 268-6850
Fax: (412) 268-5758
E-mail: dbs@sei.cmu.edu

Grace A. Lewis is a senior
member of the technical
staff at SEI. She is cur-
rently the lead for the
System of Systems Engi-
neering team within the

Intermediate Systems to Intermediate
Systems initiative. Lewis’ current inter-
ests and projects are in SOA, legacy sys-
tem modernization, and software devel-
opment life-cycle activities in systems of
systems. She has a bachelor’s degree in
systems engineering and an executive
masters of business administration from
Icesi University in Cali, Colombia, as
well as a master’s degree in software
engineering from CMU.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213
Phone: (412) 268-5851
Fax: (412) 268-5758
E-mail: glewis@sei.cmu.edu

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
MAY2006 c TRANSFORMING

JUNE2006 c WHY PROJECTS FAIL

JULY2006 c NET-CENTRICITY

AUG2006 c ADA 2005
SEPT2006 c SOFTWARE ASSURANCE

OCT2006 c STAR WARS TO STAR TREK

NOV2006 c MANAGEMENT BASICS

DEC2006 c REQUIREMENTS ENG.
JAN2007 c PUBLISHER’S CHOICE

FEB2007 c CMMI
MAR2007 c SOFTWARE SECURITY

APR2007 c AGILE DEVELOPMENT

MAY2007 c SOFTWARE ACQUISITION

JUNE2007 c COTS INTEGRATION

JULY2007 c NET-CENTRICITY

AUG2007 c STORIES OF CHANGE

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

14 CROSSTALK The Journal of Defense Software Engineering September 2007

Service-Oriented Architectures (SOA),
and services in general, are a trouble-

some subject for many warfighters.
Warfighters understand what informa-
tion they need to execute a mission, and
they are comfortable defining informa-
tion requirements through JCIDS docu-
ments and supporting architectures.
However, when this information is pro-
vided by a service, especially when
depicted as a cloud labeled Global
Information Grid (GIG), this comfort level
goes down.

Defining a service from a technical
perspective is not hard. According to the
World Wide Web Consortium [1], a ser-
vice is a software system designed to sup-
port interoperable machine-to-machine
interaction over a network. Services are
standards-based and may contain the
business logic needed to turn raw data
into information.

This definition is fine for the engi-
neers, but really does nothing to help
warfighters specify what information
they need from the service, when they
need it, and how they can trust that the
service – which they do not control – will
provide them accurate and timely infor-
mation. Additionally, the warfighter may
not have visibility into, or control over,
the business rules used to derive this
information from raw data.

The issue with services is fundamen-
tally one of perception. The average per-
son typically goes to a Web site known to
be trustworthy, one that provides timely
and accurate information. Warfighters do
the same thing; they get information
from a trustworthy source, normally a
higher echelon that they know provides

authoritative, timely, and accurate infor-
mation. The services paradigm can break
this approach by obscuring the source of
information (and how that information
was derived) from the warfighter.

When services are implemented in a
way that mimics traditional lines of com-
munication, nothing changes from the
warfighter’s perspective. They are still
receiving the same information from the
same sources. However, this approach

limits the benefits of a true services-ori-
ented approach since it just replaces one
communications technology for another
without changing how information is
discovered and delivered.

An optimal services implementation

allows the warfighter to specify the need-
ed information, when it is needed, the
quality of the information, and an objec-
tive way to determine the trustworthiness
of the information. This allows the sys-
tem supporting the warfighter to search
the GIG and other networks for an avail-
able information source that provides
that information, to establish a connec-
tion, and to start providing information.
This optimal implementation will also
enable the warfighter to specify, or at
least have insight into, the business rules
used to generate the information.

However, this implementation often
requires the warfighter to accept that for-
malized information flow between com-
mand echelons, such as the flow of logis-
tics information from superior to subor-
dinate, may no longer exist. Telling a
warfighter that his subordinates will
receive information directly from a ser-
vice outside of the chain of command
may fit reality, but it may not fit doctrine
or a warfighter’s perception about how
information should flow.

Defining Services for the
Warfighter
Warfighters tend to think very directly: I
need to know tomorrow’s weather forecast. The
weather service provides forecasts, so I will call it
and get tomorrow’s forecast. The warfighter
could describe this need architecturally,
as shown in Figure 1. In the example, the
unit’s commander knows that the same
weather service is habitually attached to
his unit and knows it will provide accu-
rate and timely information. He will also
have visibility into the business rules
used to derive the information he needs
from raw data.

Figure 2 shows a non-services imple-
mentation of this requirement. The net-
work device could be a local area net-
work, a radio, or another communica-
tions device.

A services approach could be used to
implement the same technical require-
ment. In Figure 3, the technical solution

Defining Services Using the Warfighter’s Language

Warfighters establish relationships with other warfighters to exchange information and accomplish their mission. Net-centricity
and other information service concepts provide a means, but to a warfighter these are just technical solutions to the operator’s need.
The missing piece in the push towards service oriented approaches is an understanding of what warfighters expect from a service
and a means to capture these expectations as part of the Joint Capabilities Integration and Development System (JCIDS).

Michael S. Russell
General Dynamics Information Technology

W a h r

S ctio

Com and

Po t

Weather Forecast

Figure 1: How the Warfighter Describes a Need

“An optimal services
implementation allows

the warfighter to specify
the needed information,
when it is needed, the

quality of the
information, and an

objective way to
determine the

trustworthiness of the
information.”

Defining Services Using the Warfighter’s Language

September 2007 www.stsc.hill.af.mil 15

has implemented a services approach but
from the warfighter’s perspective, noth-
ing has changed. The same information
is flowing from the same source. This
approach is similar to how selected ser-
vices, such as address books, are current-
ly provided.

Figure 4 depicts a common technical
implementation that allocates the weath-
er information requirement to a GIG
service, as opposed to a habitually asso-
ciated weather section. Several different
weather information providers could
conceivably meet the warfighter’s infor-
mation need. This depiction, even if
technically correct, does not tell the
warfighter who will be providing the
information, only that someone will pro-
vide it.

Figure 4 highlights the issue many
warfighters have with services. While the
services themselves are invisible to the
warfighter, the information provided by
them is not. The issue from the warfight-
er’s perspective is not about the services
themselves, but rather the concept of
who owns the information, how that
information flows, and what rules were
used to derive that information. This
issue readily becomes apparent when a
services approach is implemented in
such a way as to break traditional com-
mand and unit relationships.

This approach has operational bene-
fits: a deploying unit may no longer need
an associated weather section, weather
information can be pulled from a wider
variety of weather sources, and constant
weather information can be sent to all
units within a geographic region. There
are, however, downsides including quali-
ty of service, the loss of connection to a
local information source, the need to
quantify information trustworthiness,
and the rules used to derive the data.

To mitigate these downsides,
warfighters should have more control
over the requirements process that spec-
ifies how services will be implemented.
This includes being able to specify an
organization that provides trusted infor-
mation and the business rules that orga-
nizations use to generate the warfighter’s
mission critical data.

Requirements Development
Warfighters are responsible for defining
information requirements by specifying
who exchanges what information, with
whom it is exchanged, why the informa-
tion is necessary, how the information is
derived, and how the information
exchange must occur [2]. Typically, these
information requirements revolve

around the following:
• Describing the required information.
• Identifying the information producer

and consumer.
• Describing operational performance,

security, and information assurance
attributes.

• Detailing the business process,
including operational activities
and/or triggers that initiate informa-
tion transfer.

Describing how one operational unit
sends information to another operational
unit is straightforward. Using the weather
forecast example, the weather section
exchanges weather information with the
command post upon request, the informa-
tion is needed for mission planning, and
the information is unclassified but must
be securely and accurately delivered.

Weather

Information

P oovi er

Weather

Information

Proro ider

GGIIGGGG

Weather

Forecast

WeatherW

Forecast

C2

System

Service

Gateway

Network

Device

Network

Device

Service

Gateway

Weather

System

Service

Gateway

Network

Device

Command Post Weather Section

Command Post

C2

System

Figure 3: Service-Enabled Technical Implementation

Weather

Information

P ovi er

Weather

Information

Proro ider

GIIGGGG

Weather

Forecast

WeatherW

Forecast

C2

System

Service

Gateway

Network

Device

Network

Device

Service

Gateway

Weather

System

Service

Gateway

Network

Device

Command Post Weather Section

Command Post

C2

System

Figure 4: Net-Centric Technical Implementation

Weather

Forecast

Command

and

Control (C2)

System

Network

Device

Weather

System

Network

Device

Command

Post

Weather

Section

Figure 2: Technical Implementation

Continued on Page 18

16 CROSSTALK The Journal of Defense Software Engineering September 2007

The Systems and Software Technology Conference (SSTC)
held June 18-20 in Tampa, Florida focused its attendee’s

attention on the theme of Enabling the Global Mission, striving to
create and perfect the way military and industry professionals
enable the warfighter by providing improved, accessible capa-
bilities. Partnering with U.S. Central Command, the conference
planners sought to emphasize and answer the needs of the
warfighters by creating a collaborative and educational environ-
ment to explore proven best practices and share successful
insights. In 2007, the SSTC departed from
Salt Lake City after 18 successful years and
landed on the Tampa Bay shores.

The central theme of Enabling the
Global Mission streamed throughout the
conference, facilitating open discussion
among military and professionals to not
only recognize the needs of the warfighter
but to also address them. The SSTC con-
ference continued its lifelong goal of cre-
ating an open environment to achieve
results.

In his opening general session, keynote
speaker Major General Timothy F.
Ghormley, Chief of Staff, U.S. Central
Command, presented attendees with a
unique view of how software intensive sys-
tems are making a difference in our
nation’s defense, while integrating the
needs of the warfighter through their per-
spective in the field. Ghormley challenged
the audience to assist in developing ways
to render improvised explosive devices
ineffective and emphasized the urgency of
this need. Ghormley repeated, “Any
Network, Any Device” to enunciate the
impending necessity of ease of communi-
cation.

Throughout the four-day event, gov-
ernment and industry leaders enlightened
their audiences with solutions to important
issues, such as focusing on system engi-
neering problems early in product devel-
opment and the need to find better ways to
analyze computer code. Chris Miller presented an outstanding
discussion of how we are living in exponential times. Jim Tucker
expounded upon the horrific events of the attempted aircraft
hijacking of Fed Ex flight 705, which he endured. The previous
examples are a microcosm of the depth and spectrum of
knowledge shared at SSTC 2007.

From the more than 120 presentations, attendees were able
to delve into the topics of rapid response capabilities, robust

engineering, systems assurance, technology futures, communi-
cation infrastructure, and enablement of the workforce.
Numerous insights were provided from projects and organiza-
tions, showing and educating on the success in their efforts.
Common discussions within many of these presentations out-
lined varying perspectives on vulnerabilities and threats to soft-
ware systems and countermeasures for them. Surprisingly we
learned that real-time JAVA extensions are making the language
an acceptable tool for real-time software development.

Attendees also discovered how they can
use the newly released update to the
Capability Maturity Model (Vers. 1.2) to
improve their development processes.

In addition to presentations and tuto-
rials, attendees also had the opportunity to
participate in a panel discussion with gov-
ernment and industry leaders, providing
questions and receiving answers that
expressed the different perspectives from
these two sides. This year’s discussion
sparked quite a lively debate between the
panelists.

As has come to be expected with
SSTC, participants were pampered with
great food, key information, networking,
and a fun evening cruising around Tampa
Bay. Speaking of fun, attendees of this
year’s SSTC trade show were able to gain
a sense of what it is like to fly though the
Grand Canyon at near supersonic speeds
in an actual flight simulator.

To sum up the SSTC experience, one
appreciative and excited attendee noted, “I
appreciated the real-world case studies
provided by speakers and I received great
information from a subject matter expert
who has done it.” Some of our other
favorite quotes included, “Good social
activities and opportunities to network,”
and “Great conference.” Another
attendee said, “I’m only allowed to attend
one conference a year and SSTC is always
the one I attend.”

Although SSTC amended many traditions, it remains dedi-
cated to preserving what makes SSTC the premier technology
event for the Department of Defense by providing a showcase
for the cutting-edge technologies. SSTC aims to create a collab-
orated environment to Enabling the Global Mission and serv-
ing the warfighter’s need for ease of information.

Systems and Software Technology Conference 2007:
Enabling the Global Mission

“ I appreciated the
real-world case studies
provided by speakers
and I received great
information from a

subject matter expert
who has done it.”

“Good social activities
and opportunities
to network ... ”

“I’m only allowed to
attend one conference a
year and SSTC is always

the one I attend. ”

Photo credits: Brent Baxter and Nicole Kentta

September 2007 www.stsc.hill.af.mil 17

Conference attendees take a break to mingle and enjoy the
fabulous food.

Barry Boehm, Jo Ann Lane, Mike Phillips, and Rick Turner discuss new article
ideas at the annual CrossTalk author luncheon.

Nicole Kentta and Glen Luke greet trade-show attendees as they
stop at the SSTC booth.

Session attendees
and speakers
mingle before
their morning
presentations.

Jeff Schwalb poses for a picture between sessions at
the trade show. Attendees and guests board the yacht, Starship, for the conference’s special dinner

cruise event.

Service-Oriented Architectures

18 CROSSTALK The Journal of Defense Software Engineering September 2007

However, when this same scenario is
detailed using the services implementa-
tion in Figure 4, the information pro-
ducer cannot always be defined. The
information producer could be one of
many weather information producers
located in the deployed theater, at a
stateside-based location, or any point in
between. Instead of describing the
expected point-to-point information
exchange, the warfighter now sees a
request sent to a service. This can leave
the warfighter feeling he has lost control
of where he receives his information
and with doubts of the trustworthiness
of the information.

Mitigating these concerns requires
changes to the way operationally related
architecture data is documented. First,
change the way architectural diagrams
are designed, highlighting the fact that
an information service is provided by an
organization, not a computer.
Warfighters build trust with other
warfighters, not the technology which
provides information. Fundamentally,
services are just the way an organization
– no matter where in the world it is
located – can provide information to the
warfighter.

Second, requirements developers
should add additional information to the
warfighter’s information exchange
matrix (information concerning quality,
trustworthiness, etc.) and to the
warfighter’s list of Information

Exchange Requirements. For example,
trusted operational sources for informa-
tion could be added as well as the
warfighter’s expectations for graceful
information degradation on limited
bandwidth networks.

Third, the warfighter is concerned
about how raw data is captured, validat-
ed, and used to develop information. In
today’s rapid-paced environment, the
warfighter does not have time to study
raw data to derive the information need-
ed to make effective decisions. However,
making decisions based on information
derived to support someone else’s busi-
ness process may lead to a bad decision.
So the warfighter must be able to help
specify the processes used to develop
the information, or at least be able to
have some visibility into the process.

Capturing the Warfighter’s
Service-Related
Requirements
From the warfighter’s perspective, infor-
mation is being exchanged from one
organization to another. From this per-
spective, services are the technical
implementation – not the operational
requirement. A diagram such as Figure
5, while it still includes the GIG, clearly
identifies to the warfighter where he can
get his weather forecast and, to some
extent, an expectation about the quality
of data that will be received; more
importantly, it informs the warfighter
who to call if the information does not

meet his mission needs.
With this diagram, the warfighter has

a definite knowledge about who will be
providing the information required to
execute the mission (in this case a U.S.
Navy [USN] stateside-based weather
service and a U.S. Air Force [USAF] the-
ater-based service). There is no need to
capture every possible information
provider, just the most likely ones.
Figure 6 provides one possible technical
implementation of the same operational
need.

Approaching the architectural dia-
grams in this manner enables the
warfighter to be more specific about
what information is expected to be pro-
vided. This specificity should also be
captured in the information exchange
matrix. The Department of Defense
(DoD) Architecture Framework v1.5
provides a recommended information
exchange matrix format. The matrix
emphasizes the operational characteris-
tics of the information and is not
intended to be an exhaustive listing of
all operational details. Rather, this prod-
uct is intended to capture the most
important aspects of selected informa-
tion exchanges [2].

Starting with this matrix and adding
the following data elements will help
capture the warfighter’s expectations for
service-provided information. These
elements address the warfighter’s need
to control how service-derived informa-
tion is sourced, stored, and acted upon.
• Information owner. The sending

operational node is not necessarily
the owner or producer of the infor-
mation; sometimes it acts as a pass-
through or operate off of derived infor-
mation. This is the operational entity
actually producing the information
that the warfighter requires to exe-
cute his mission.

• Information storage. Does the
warfighter require his system to
locally store the information?
Information such as operations
orders may need to be stored, but
individual common operational pic-
ture elements may not. Warfighters
have mission critical information
that must be present regardless of
network or service operational sta-
tus, and only being able to access this
information when the network is up is
not an option.

• Information perishability. How
long does the information received
from a service need to stay opera-
tionally relevant to meet the
warfighter’s mission requirements? If

Command

Post

USAF Theater

Weather

Prorovider
GGII

Command Post

2

Sy tem

Se vvice Netwtwork

USN C N S

W

S ce

USAF Theater

W at er
GIG

Weather

Forecast

Weather

F t

USN Continental

United States (CONUS)

Weather Service

Figure 5: Operationally Focused SOA Diagram

Command

Post

USAF Theater

Weather

Prorovider
GGII

Command Post

2

Sy tem

Se vvice

Gateway

Netwtwork

De ice

USN C N S

W

S ce

USAF Theater

W at er

Prorov er
GIIGGGG

Weather

Forecast

Weather

Forecast

USN Continental

United States (CONUS)

Weather Service

Figure 6: Implementation Oriented SOA Diagram

Continued From Page 15

September 2007 www.stsc.hill.af.mil 19

the network only allows a 30 minute
information update, but the infor-
mation is only valid for 15 minutes,
the warfighter’s needs will not be
met.

• Quality. This is a subjective or
objective measure that defines how
good the information should be
regardless of its source. Operation-
ally, the information must meet this
threshold; the system must be able to
cycle among available, trusted infor-
mation sources to provide the best
information.

• Trustworthiness: This provides a
subjective or objective measure that
ranks the information owner,
enabling the warfighter to give prece-
dence to one information owner
over another based on operational
considerations. The warfighter
should also be able to explicitly
exclude information providers if
desired.

• Information derivation: This in-
cludes the business rules the war-
fighter expects to be implemented to
change raw data into useful informa-
tion. There are many possible and
correct ways to derive information.
As the warfighter will be making
decisions based on the information,
not raw data, the warfighter needs to
be assured that the way information
will be generated meets its require-
ments.
The following data elements should

be added to the matrix to capture how
the warfighter’s expectations about
information produced by its system
could be made available through a ser-
vice. Though similar to some informa-
tion assurance-related elements, they
serve a different operational purpose.
• Service discoverability. Should the

information be discoverable by all
users (public), users fitting a certain
profile (restricted), or only upon
invitation (private)?

• Subscriber roles. Should informa-
tion exchange be restricted to other
users within a defined chain of com-
mand (role based) or not (non-role
based)?

• Subscriber availability. Will the
information be available to external
subscribers continually (continuous)
or in accordance with the situation
and doctrine (limited)? This enables
other warfighters to determine how
much they can depend on this infor-
mation source.

• Subscriber storage. Should the
information be storable by the sub-

scriber? In some instances, there is
an operational requirement to dis-
able a subscriber’s ability to store ser-
vice-provided information.

Current Implementation
Weather information, a subset of what
is known within the DoD as
Meteorology and Oceanography
(METOC) information was chosen to
showcase a net-centric service currently
available to warfighters called the Joint
METOC Data Services Framework
(JMDSF) [3] provided by the Naval
Oceanographic Office or NAVO-
CEANO. The JMDSF is designed to be
a tool kit for deploying data-oriented
services to securely deliver geospatial
information and is the vehicle used by
DoD to establish a single access point
for all METOC data.

Using JMDSF, NAVOCENO can
collate METOC data from numerous
government and commercial providers,
normalize this data, and publish it for all
DoD METOC information users.
JMDSF is responsible to the warfighter
for recording where authoritative data
resides, thereby easing the warfighter’s
concern for authenticating data [3]. To
make this service even more useful, a
Web-based front end and file transfer
protocol push capability has been devel-
oped to enable the warfighter’s system
to retrieve METOC information in a
variety of ways over networks of differ-
ing capacity.

No matter how useful, JMDSF is still a
technical implementation of a net-centric
service, not the operational activity pro-
viding the information. That organization
will still be NAVOCENO, the Air Force
Weather Agency, or some other opera-
tional entity. No matter how good JMDSF
is at delivering METOC data on behalf of
NAVOCENO, it is still only the current
technical solution. The operational need
to retrieve and act on METOC informa-
tion does not change. By describing this
need in terms of the operational require-
ment via the technical service solution, the
warfighter can clearly define his require-
ments and be assured the technical solu-
tion will implement it.

Conclusion
Net-centric services provide warfighters
with improved access to the information
they need to make decisions, but only
when these services are implemented in
a way that reflects the warfighter’s
requirements. The services themselves
are invisible to the warfighters, but the
information the services provide is not.

Warfighters must be assured that
their information needs will be met
regardless of the technology that imple-
ments their requirements; especially
since these services will be eclipsed by
newer technologies over time. So identi-
fying netcentric service requirements
should be accomplished early in the
JCIDS cycle and validated at each step.
Regardless of the technology that pro-
vides information, the warfighter’s
requirement to ensure all information is
timely, accurate, relevant, and trustwor-
thy will not change.u

References
1. “Web Services Glossary.” W3C

<www.w3.org/TR/ws-gloss/#web
service>.

2. DoD Architecture Framework
Working Group. “DoD Architecture
Framework, v1.” Washington: Assis-
tant Secretary of Defense for Net-
works and Information Integration,
2004.

3. Washburn, P., and T. Morris. “NAV-
OCEANO Web Services: Online
Data and Functionality for the
Warfighter.” CHIPS Jan.-Mar., 2005:
37-39.

About the Author

Michael S. Russell is a
senior technical director
for General Dynamics
Information Technology.
He has served as lead
systems engineer or sys-

tems architect on numerous federal,
DoD, and industry development efforts,
and currently manages programs for the
U.S. Marine Corp’s Systems Command.
Prior to this, Russell served in the U.S.
Army. He is a faculty member with the
Federal Enterprise Architecture Certifi-
cation Institute and is a member of
International Council on Systems
Engineering. Russell holds a master’s
degree in software engineering from
George Mason University and has taught
systems engineering courses for the past
eight years.

General Dynamics Information
Technology
16 Center ST
STE 109
Stafford,VA 22556
Phone: (540) 657-5393
E-mail: mike.russell@gdit.com

Defining Services Using the Warfighter’s Language

20 CROSSTALK The Journal of Defense Software Engineering September 2007

This article describes the experiences
of the Hill Air Force Base software

engineers in the 309 Software
Maintenance Group (SMXG) who devel-
op the Operational Flight Program
(OFP) for the Fire Control Computer
(FCC) of the Block 30 F-16 aircraft. This
article details how the engineers incorpo-
rated an SOA to automate its develop-
ment and evaluation process of weapon
coefficients for the delivery of air-to-
ground munitions.

The use of open source and stan-
dards-based technologies were key suc-
cess factors for a small team to accom-
plish the SOA implementation in a do-it-
yourself fashion. Using publicly available
open source software was instrumental in
minimizing the implementation time and
associated interruptions to the engineers’
normal OFP candidate workflow.
Choosing technology based on open
standards ensured that they were maxi-
mizing the interoperability between sys-
tems.

The engineers were successful in re-
using data and applications previously
deployed in single-user, single-computer
configuration and transforming them

into a unified multiuser client-server plat-
form that resulted in a building-wide net-
work capability. As a result, non-collocat-
ed system engineers, developers, and
testers had access to the design and eval-
uation tools.

The improved collaboration resulting
from the orchestration of network appli-
cations and shared resources enabled the
engineers to achieve a return on invest-
ment (ROI) and progress in meeting its
309 Maintenance Wing’s AS9100 objec-
tives of lowering cost, meeting schedule,
improving quality, and fostering a culture
of continuous improvement.

This article proceeds by first provid-
ing a background section that introduces
the key terminology. Next, the article
describes the former development and
evaluation process. Then, the article high-
lights former inefficiencies and provides
the solution which incorporated an SOA
as an integration tool to achieve better
results.

Background
1. What is a weapon coefficient?

Weapon coefficients are parameters
used to calculate weapon trajectories.

Examples of weapon coefficients
include weight, the cross-sectional
area, and other aerodynamic perfor-
mance factors.

2. What is a footprint?
For every weapon release there is an
associated area on the ground repre-
senting the possible impact points.
This area is referred to as the foot-
print.

3. What is a flyout?
In particular, there are four points on
the boundary of the footprint that are
of interest: the Maximum Along
Track Range, the Minimum Along
Track Range, The Maximum Right
Cross Track Range, and the
Maximum Left Cross Track Range.
These points correspond to the
longest forward distance, the shortest
forward distance, the furthest right-
forward distance, and the furthest
left-forward distance, respectively,
that the weapon can achieve. These
points are referred to as flyouts.

4. What is truth data?
Truth data is the real-world results
used to compare calculated trajecto-
ries and impact points. Truth data is
typically provided by the weapon
manufacturer in the form of files or a
computer application (weapon
model) which produces an output file.

Former Weapon Coefficient
Design Process
Figure 1 shows a top view of a Joint
Direct Attack Munition (JDAM) release.
In the FCC, the four JDAM flyouts are a
function of the weapon release point and
the weapon coefficients. The four flyouts
define a quad-ellipse footprint.

Design Objective: Generate the opti-
mal set of weapon coefficients to deter-
mine JDAM flyouts for all release points.

Figure 2 shows the former 3-stage
weapon coefficient design process. In

Applying a Service-Oriented Architecture to
Operational Flight Program Development

This article describes how a Service-Oriented Architecture (SOA) was successfully applied to reuse data and applica-
tions previously deployed in single-user, single-computer configurations. The collection of data and applications was
transformed into a unified, multiuser, client-server platform through the use of open source and standards-based tech-
nologies to minimize development time, maximize interoperability, and facilitate collaboration. The collaboration result-
ing from the multiuser network capability and shared resources enabled progress towards the Aerospace Basic Quality
System Standard (AS9100) goals of lowering cost, meeting schedule, improving quality, and fostering a culture of con-
tinuous improvement.

Mitch Chan
309 Software Maintenance Group, Hill Air Force Base

Weapon Release

M inimum Along Track

Range

M ximum Alon

Maximum

CrossTrack

Range

Maximum

CrossTrack

Range

Maximum Along Track

Range

Minimum Along Track

Range

Maximum

Cross Track

Range

Maximum

Cross Track

Range

Weapon Release

T

Figure 1: JDAM Flyouts

September 2007 www.stsc.hill.af.mil 21

stage 1, the system designer ran the
weapon models to generate data for the
purpose of comparing the results of the
FCC calculations. In stage 2, the system
designer generated a set of weapon coef-
ficients intended to meet the design
objectives stated above. In order to com-
plete this task conveniently, the system
designer used a simulation of the FCC
OFP. Finally, in stage 3, the system
designer handed off the weapon coeffi-
cients to the developer who incorporated
the weapon coefficients into the OFP
code. Both the developer and tester com-
pared the test stand results against the
simulator results used in stage 2.

Inefficiencies of the Former
Weapon Coefficient Design
Process
From a resource point-of-view, the for-
mer design process relied predominantly
on the system designer, who performed
stage 1 and stage 2. Because this process
was serial, the developer and the tester
were kept waiting until the end of design
process. The system designer became the
specialist and limited his bandwidth (avail-
able time and energy) to work on other
projects.

The design process did not scale well.
For practical purposes, the system
designer addressed one weapon at a time,
which caused a bottleneck if two or more
weapons were involved.

Finally, and most importantly, the
design process was not collaborative. The
system designer essentially disappeared
and the design of the weapon coeffi-
cients became a black art. The single-
user, single-computer deployment did
not encourage developers to invest time
in the development tools.

Enter SOA
SOA Purpose
The SOA was designed, implemented,
and launched with the intent of making
the design tools and data accessible on
UNIX desktops across the building net-
work. Servers were a mixture of personal
computer and UNIX workstations.

SOA Design
Figures 3 and 4 are the UML diagrams
that describe the design of the SOA.
Figure 3 shows the five scenarios or use
cases. Figure 4 (see page 22) describes the
orchestration sequence of the user’s
client application. Note that the fifth Use
Case Store Results was added with the
intent to replace data that was previously
stored in personal directories with a cen-

tral storage repository.
Figure 4 elaborates some details of

the use cases discussed earlier. Note that
results are stored in a database versus
files.

SOA Implementation
Remote access to the database and the
weapon models were provided using

open source Web Services. The Web ser-
vices were constructed using two Java 2
Enterprise Edition (J2EE) Web servers.
The weapon models were accessed using
a SUN Microsystems Java Web Services
Development Pack server. Data Access
Objects were exposed across the network
using an Apache Tomcat Web server with
Axis to provide the Web services connec-

System Designer

System Designer

Developer and Tester

Weapon Models

Operational Flight

Program Simulator

Test Stands

Stage 1:

Generate Truth Data

Stage 2:

Generate Weapon

Coefficients

Stage 3:

Incorporate and Verify

Weapon Coefficients

Run Truth Model

Run Simulator

Run Test Stand

Compare Results

Store Results

Client

Weapon ReleaseWeapon Release

Truth Data

Weapon Coefficients

Figure 2: Former Design Process

System Designer

System Designer

Developer and Tester

Weapon Models

Operational Flight

Program Simulator

Test Stands

Stage 1:

Generate Truth Data

Stage 2:

Generate Weapon

Coefficients

Stage 3:

Incorporate and Verify

Weapon Coefficients

Run Truth Model

Run Simulator

Run Test Stand

Compare Results

Store Results

Client

Weapon Release

M inimum Along Track

Range

M ximum Alon

Maximum

CrossTrack

Range

Maximum

CrossTrack

Range

Maximum Along Track

Range

Minimum Along Track

Range

Maximum

Cross Track

Range

Maximum

Cross Track

Range

Weapon Release

Truth Data

Weapon Coefficients

Figure 3: Use Case

Applying a Service-Oriented Architecture to Operational Flight Program Development

Service-Oriented Architectures

22 CROSSTALK The Journal of Defense Software Engineering September 2007

tion, and Spring/Hibernate to provide
the data access objects, persistence,
object-relational mapping, and database
connection.

The choice to use open source soft-
ware greatly accelerated the implementa-
tion since a major coding effort was
avoided. The majority of the effort was

tweaking pre-existing Java source code
and editing of eXtensible Markup
Language configuration files. The use of
standards-based technology on the serv-
er-side such as Web services ensured
maximum interoperability and tools to
create client applications1.

The lab workstation running the test
stands was accessed via UNIX Remote
Login and Remote Shell Programming
since the client and server workstations
both ran UNIX.

Orchestration of the weapon models,
the database, and the test stands was per-
formed using Matrix Laboratory (MAT-
LAB) in concert with Perl to create a rich
client interface. MATLAB and Perl were
chosen as client orchestration tools since
they were native to the client Sun work-
stations.

MATLAB was chosen primarily
because of its visualization tools, graphi-
cal user interface interfacing tools, math
library, and toolboxes. Most of the engi-
neers, especially the recent hires, had
plenty of hands on experience with
MATLAB. Perl was used for its regular
expression capability to handle text input
and output. Perl also had the ability with
its Simple Object Access Protocol-Lite

Develop Weapon Coefficients()

Client

Developer UNIX Workstation

System Engineer UNIX Workstation

Tester UNIX Workstation

Developer UNIX Workstation

Web Services

J2EE Server Weapon Models

Rlogin and Rsh

Lab Workstation

Test Stands

Web Services

J2EE Server

Data Access Objects

Database

Weapon Model Simulator Test Stand Database

Run Weapon Model

Return Results

Load Weapon Coefficients

Run MATLAB Simulator

Retrieve Results

Load Weapon Coefficients

Run Test Stand

Retrieve Results

Compare Results()

Store Results

Figure 4: Sequence Diagram

Develop Weapon Coefficients()

Client

Developer UNIX Workstation

System Engineer UNIX Workstation

Tester UNIX Workstation

Developer UNIX Workstation

Web Services

J2EE Server Weapon Models

Rlogin and Rsh

Lab Workstation

Test Stands

Web Services

J2EE Server

Data Access Objects

Database

Weapon Model Simulator Test Stand Database

Run Weapon Model

Return Results

Load Weapon Coefficients

Run MATLAB Simulator

Retrieve Results

Load Weapon Coefficients

Run Test Stand

Retrieve Results

Compare Results()

Store Results

Figure 5: Enterprise Diagram

Applying a Service-Oriented Architecture to Operational Flight Program Development

September 2007 www.stsc.hill.af.mil 23

(SOAP-Lite) package to create a Web ser-
vices client simply by setting its service
pointer to the URL of the Web Services
Definition Language file.

Figure 5 shows the final Enterprise
Diagram for the SOA. Note that the sim-
ulator does not appear since it runs local-
ly on the client UNIX workstation.

SOA Innovations
20 Minutes to 20 Seconds
One of the first initiatives was to reduce
the role of the simulator and develop
directly on the test stand. The major hur-
dle was the length of time required to
check whether the coefficient changes
were right or wrong. Coefficient changes
had to be incorporated in the OFP code.
Then the OFP code had to be re-com-
piled which took more than 20 minutes.

The contractor responsible for the
test stands recommended and imple-
mented a workaround to speed up the
process. The contractor added a capabili-
ty to upload weapon coefficient files
which took only 20 seconds. The new
process of incorporating coefficient
changes in a file and uploading the file
was simple and fast. With the new
process, it became practical to develop
directly on the test stand.

Multiple Sessions on the
Desktop
Using an older version of MATLAB
(Vers. 5 versus Vers. 14) enabled multiple
MATLAB client sessions to run on the
UNIX desktops. This enabled multiple
projects to be open at one time. Perl, in
concert with its SOAP-Lite package,
facilitated the use of an older version of
MATLAB (Vers. 5) which did not have
the Web services remote access capability
but was less of a central processing unit
and memory hog.

ROI and Progressing Towards the
AS9100 Objectives
The AS9100 organizational objectives are
the following:
1. Decrease cost.
2. Meet or exceed schedule.
3. Improve quality.
4. Develop a culture of continual

improvement.

Decreasing Cost
Cost saving was realized both short term
and long term. In the short term, the
SOA was applied to the current release of
the FCC OFP. Expensive end-of-cycle
rework costs were avoided by getting the
design right the first time. In the long

term, cost saving was realized by reduced
man-hours (50 percent reduction) result-
ing from the improved automation and
efficiency. A fellow engineer working on
a follow-on project noted the following: I
love the tools. I can run the application, check
back later, and find all the graphs and results
that I need.

Meeting and Exceeding Schedule
Requirements
Removing the keystrokes and mouse
clicks reduced the probability of operator
error. Comparison between different
weapon coefficients sets and improved
collaboration lowered the variability
between developers in designing weapon
coefficients. These factors helped to
achieve better predictability in the execu-
tion of the design process.

Improving Quality
The quality of weapon coefficients could
be scored by coverage and false positives.
Coverage is the percentage of the area of
truth model footprint covered. False posi-
tives are the number of impact points
lying outside the truth model footprint.
Also, the number of release points on the
test stand was increased by more than
1,000 percent. The previous method was
too time consuming to allow scoring of
more than 40 release points per set of
weapon coefficients (over 400 coeffi-
cients tested at a time). The efficiency of
the new method now allows us to score
up to 1,100 release points per set of coef-
ficients.

Developing a Culture of Continual
Improvement
The SOA enabled a more data-driven
design process. As alluded to earlier, the
scores coverage and false positives could be
measured from the test run data recorded
in the database. Adding more release
points over a full range of release condi-
tions increased the statistical significance
of these scores. Using the current scores
as a feedback mechanism, the developer
could further refine the weapon coeffi-
cients to produce better scores for the
next design iteration.

Lessons Learned
The engineers considered a base-wide
network version of the SOA. However,
servers and applications on the base-wide
network were subject to quarterly time
compliance network orders and vulnera-
ble to any collateral damage resulting
from patch pushes to update the
Microsoft Operating System and

Standard Desktop Configuration. In the
end, the engineers decided to stay off the
base-wide network to avoid the extra
computer administration and mainte-
nance.

Conclusion
This article presented SOA from the
front line and trenches view of software
OFP development at Hill Air Force Base.
An SOA applied to automate software
development process was introduced. An
overview of the inception, elaboration,
construction, and transition was covered.
Finally, no discussion of an SOA would
be complete without evaluating the ROI.
ROI was presented in the framework of
meeting the 309 Maintenance Wing
AS9100 core objectives.u

Note
1. Deliverables from the Basic Profile

Working Group. 2007. WS-I Web
Services Interoperability Organi-
zation. 6 June 2007 <www.ws-i.org /
deliverables/workinggroup.aspx?
aspx?wg=basicprofile>.

About the Author

Mitch Chan has served
four years at Hill Air
Force Base as a Principle
Engineer and an Em-
bedded Systems Software
Developer for the 309th

developing the OFP for the FCC of the
Block 30 F-16 aircraft. He specializes in
the delivery of air-to-ground weapons
and was the primary FCC engineer
responsible for adding the capability to
deliver the 500-pound JDAM (GBU-38),
currently employed by the F16C+ air-
craft deployed in Iraq. Chan has a bach-
elor’s degree in mathematics from the
University of California at Berkeley, a
bachelor’s degree in electrical engineer-
ing from California State University at
Sacramento, a master’s degree in electri-
cal engineering from Santa Clara
University, and a masters of business
administration from the University of
California at Davis.

309 SMXG
6137 Wardleigh RD
BLDG 1515 RM 248
Hill AFB, UT 84056
Phone: (801) 586-6756
E-mail: mitch.chan@hill.af.mil

24 CROSSTALK The Journal of Defense Software Engineering September 2007

Open Forum

Leading institutions are moving toward
net-centric systems: highly distrib-

uted and flexible methods for delivering
required technology in a shared, reusable
way to support operations. Achieving
net-centricity in the military and other
government agencies will require both
organizational policies for sharing a com-
mon set of goals and technology strate-
gies like SOA.

However, there are good reasons why
divisions often build and maintain their
own monolithic applications: a lack of
trust. How can you be sure that a third
party will deliver the required functionali-
ty if they are not on the line to make it work
for you? Realizing an effective federated
SOA strategy in mission-critical theatres,
such as warfighter scenarios or air traffic
control, requires establishing trust between
peer units with services managed outside
of the vertical chain of command.

Technology innovation around SOA
is happening on a rapid scale within both
defense and civilian government agen-
cies. This change is being driven by eco-
nomic and operational concerns that the
business world at large may not fully
comprehend. Indeed, a typical business
technologist may comment on the opera-
tional and budgetary bloat of federal
organizations, but reality demonstrates
that there is fierce competition for invest-
ment dollars within the public sector.
Programs must reach milestones of suc-
cess, despite resource and time con-
straints, and within a potentially even
more dynamic environment than the typ-
ical commercial enterprise.

By pushing for long-term goals, the
public sector provides value to taxpayers
by helping create a purpose-driven market
for technology investments. After all,
where did we get the Internet itself
(Defense Advanced Research Projects
Agency-net [DARPAnet])? Or the quality

and implementation best practices of
Capability Maturity Model Integration
(CMMI) or the Information Technology
Infrastructure Library (ITIL)1?

The common goals of many govern-
ment and defense agencies will create a
purpose-driven market: a notional archi-
tecture where services can be published

and consumed through a central, shared
authority and knowledge base while
retaining the flexibility to meet opera-
tional and business needs.

Pertaining to the government as a
model SOA example, Dave Linthicum of
the Linthicum Group said the following:

I think that the government can
benefit most from SOA, consider-
ing the nature of their business
and the underlying need to have
many systems interoperate.

However, there needs to be a real-
istic understanding of the issues at
hand, and perhaps they need some
new approaches other than build-
ing architectures that look like
archeological layers of past IT
contracts. I do think some of the
more spectacular SOA successes
will come from the government
side. [1]

We can think of this system just like
we think of the idea of multiple state
governments operating within a federal
government. Each state has its own laws,
objectives, and budgets, but all of the
states in the system are also governed
through a federal authority. This model
can also be applied to SOA application
architectures, to define a Federated SOA.

The Federated SOA will provide a
leading indicator for where net-centric
software innovation is headed for the
business world. The innovations that led
up to DARPA or CMMI were not
designed simply to make money or opti-
mize cost. They were born from the idea
that we have a specific, targeted outcome
to reach. Let us take a step forward to
prove why governmental approaches are
going to produce leading-edge techniques
for SOA governance.

Challenges
Federal agencies, just like any other glob-
al enterprise, are now at a crossroads for
establishing an SOA strategy in a world
where no single strategy can possibly
cover every need. Countless siloed tech-
nologies currently exist as acronyms
within each operational unit. Supporting
and maintaining so many separate plat-
forms becomes untenable over time, as
any additional functionality or code adds
to the existing technologies in a stovepipe
fashion. Each new customization and
every line of code written for one of
these stovepipe technologies results in a
long-term annuity that will have to be

For Net-Centric Operations, the Future Is Federated

SOA (Service-Oriented Architecture) is an ideal strategy for enabling net-centricity across shared application environ-
ments. But before materiel providers can realize the flexibility and reuse advantages of migrating systems to a shared
SOA model, how can they avoid the risk of missed end-customer requirements? Achieving a sense of trust in SOA
requires more than the right development and testing technologies. Net-centricity requires constant validation and a shared
certification process to ensure that applications are meeting the needs of the warfighter – even as the shared technology
environment changes and evolves.

John Michelsen
iTKO, Inc.

“By pushing for
long-term goals, the

public sector provides
value to taxpayers by

helping create a
purpose-driven market

for technology
investments –

opportunities for
innovation that the
stockholder-driven

company can
never realize.”

® CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

September 2007 www.stsc.hill.af.mil 25

paid back and supported over time.

Organizational: Vertical Trust vs.
Horizontal Competition
For net-centric computing environ-
ments, vertical trust (i.e. trust up and
down a common chain of command) is
far easier to achieve than horizontal trust
(i.e. across authority domains or organi-
zational units).

Vertical Trust
In most organizations, vertical trust is
relatively easy to come by and already
exists. The line of reporting structure
typically creates the sense of reuse stan-
dardization and the ability to leverage
vertically within an organization.

As shown in Figure 1, in vertical
hierarchies within organizations, there is
an expected level of shared trust.
• The higher levels within can expect

the underlying teams to build to order
technology assets and maintain them
according to defined policies.

• Supporting providers can expect the
requestor to leverage the developed
materiel capability services according
to well-understood and defined
requirements.

Horizontal Trust
At the highest levels, horizontally across
peer groups, a lack of trust is usually not
the case (see Figure 2). Ironically, a lot
of organizations that share common
goals tend to foster a not invented here
mentality that inhibits collaboration
between horizontal peer groups. That is
the source of why horizontal gover-
nance is such a critical aspect to SOA
adoption.

Across different operational or busi-
ness units, coordinating the proper use
of a service can be difficult.
• Materiel or service providers want to

establish reuse of their services, but
they are answerable to different
stakeholders.

• Upstream consumers of services
may not provide clear enough use
cases or policies of how they will
leverage the services.

• Therefore, teams often build and
maintain redundant functionality in
vertical silos.
Redundant efforts create inefficien-

cies when software functionality gets
duplicated. Therefore, before we can
realize the value of reusable services
offered within a federated software
strategy, agencies must learn to establish
trust horizontally, across organizational

and chain-of-command boundaries.

Federated Technologies Are
Heterogeneous
The operational rules and behaviors of
an SOA live in the middle tier (between
the interface and the database layers),
iterating within an alphabet soup of tech-
nology acronyms (for example, XML,
SOAP, WSDL, ESBs, etc.), which are
exposed as services. These services are
technology assets that can be managed or
published within your own authority
domain or reside outside the department
or even outside the organization.

Services Need Not Be Web Services
Many technology vendors simply equate
Web services (WSDL/SOAP2) with SOA;
from a testing point of view, they equate
the testing of Web services with the test-
ing of SOA.

While it is true that a number of ini-
tiatives for doing SOA are very Web ser-
vices-centric, the Aberdeen Group’s last
research on this points out that only
about 50 percent of the SOA initiatives at
best-in-class companies are Web services-
based [2]. There are a variety of tech-
nologies being used to create that com-
moditized middleware for SOA. While
Web services can be a good integration

strategy, other technologies are valid and
possibly better for a given organization
than a Web services stack, for instance,
using an Enterprise Service Bus with lit-
tle reliance on Web services.

The distinction between Web services
and SOA testing in general is important.
There is more than one way to build an
SOA. Teams need to test the implemen-
tation and side-effects that occur across
heterogeneous technologies, as opposed
to just a selected middleware layer like
SOAP.

As illustrated in Figure 3 (see page
26), there is inevitable complexity under
the surface of any large-scale implemen-
tation. In an SOA, more unique technology
types, multiplied by more points of connection,
equals an exponential increase in possible fail-
ure points.

Heterogeneous technologies will
never go away and leave behind a totally
homogenous platform. There are several
reasons for this.
1. Legacy systems cannot just be

ttuurrnneedd ooffff.. Technologists are always
attempting to provide more flexible
application architecture at a lower
cost to their constituents. As tech-
nologies evolve, we almost never have
a cost justification to retire existing
systems and replace them with the
new technology. The Web services

Remote Method

Invocation Objects

Figure 1: Vertical Governance Along a Chain of Command

Remote Method

Invocation Objects

Figure 2: Horizontal Trust Across Organizational Boundaries Bears More Risk of
Misunderstandings or Missed Requirements

For Net-Centric Operations, the Future Is Federated

Open Forum

26 CROSSTALK The Journal of Defense Software Engineering September 2007

stack now considered modern tech-
nology will soon be outdated, and an
integration strategy to leverage these
soon-outdated applications with
tomorrow’s better thinking will be
needed.

2. Resistance to vendor monopoliza-
tion. A we do it all vendor can promise
uniform specifications and the bene-
fits of increased scale, but for larger
clients, tying the entire technology to
the platform of a single vendor may
inhibit specialization and become per-
ceived as a long-term risk if develop-
ment priorities (or pricing structures)
change. Thus, even new applications
are built on a variety of technology
platforms.

3. Distributed authority domains.
Federated organizations have multiple
chains of command. Operational
units have unique functional needs
from technology assets, therefore,
they naturally desire to keep some
teams and service assets under direct
control.
To trust SOA, a much deeper level of

collaboration testing must occur as a con-
tinuous process, not an event. The ser-
vices, and the expected uses of them,
must be submitted and certifiable (func-
tionally and at load) to the community
relying on the SOA.

Policies Are Hard to Follow
A policy basically defines an expected
behavior. Governance of SOA applica-
tions goes hand-in-hand with defining and
enforcing policies in order to achieve con-
trol of, and trust in, the SOA application.

But what is policy? Often technolo-

gists mistakenly approach policy as a
solely structural concern. For instance, is
the syntax of the XML message formed correct-
ly? Do the components connect according to our
selected standards? Structural concerns are
just one aspect of policy that needs to be
addressed.

Once structural standards are in
place, a behavioral definition of policy
will become a determining factor in the
success of any SOA endeavor. A behav-
ioral policy basically defines what the sys-
tem should operationally do to support
its intended use.

We need to realize that the organiza-
tion will not want to write policy con-
cerned about technical standards. Rather,
the organization’s version of policy will
be the following:
• I really need functional integrity on

this particular transaction activity of
the system.

• I really need the response on resource
availability to be accurate within 30
minutes of my request.

• I cannot allow stale data to be report-
ed as current activity in the field.
Net-centricity is about sharing opera-

tional functions and placing expectations
upon the systems that are implementing
those policies. That is meaningful policy.
SOA policy must focus on the functional
integrity of the application – the quality
and reliability of the end customer expe-
rience, accuracy of data, and runtime per-
formance of the application.

Service Consumption Is Not Free
There is a commonly held (and some-
what sentimental) notion that once the
SOA architecture is in place, it will pro-

vide an environment of published ser-
vices that multiple consumers can basi-
cally leverage within their own workflows
at little or no cost. This model is valid for
very non-differentiated or commoditized
services such as news feeds, simple calcu-
lators for unit conversions, and the like.

Take for instance a small application,
developed specifically for a military unit’s
internal use. The certification level, and
the level of structural, behavioral, and
performance policy will not be nearly as
high. The maintenance cost for that ser-
vice will be much lower and there will be
much less risk and testing rigor in chang-
ing that service when a finite set of con-
sumers are impacted by that change.

Now consider a mission-critical,
broadly reused service that will have a
widely distributed use among all military
divisions, including some that the devel-
opment team may not even yet be aware
of. That creates an increased cost of pro-
ducing a service that is robust over time
and reusable. If consumption creates
cost and effort for the producer, then the
consumption itself should not be free.

A reckoning must occur when a con-
suming project team gets benefit from an
existing reusable service that is properly
maintained. Otherwise, the production of
robust, quality services is penalized. An
increased cost burden, without an associ-
ated increase in the budget for that service
to be reused, will actually threaten that ser-
vice’s long-term quality and adherence to
the policy the consumer expected.

Consumption of existing services can
reduce the cost and effort of producing a
solution. Over time, the service con-
sumer must bear some accountability to
the publisher of those services. If all par-
ties involved in SOA realize that there is
no free beer, the end result will be a more
sustainable marketplace of services.

Solutions
Establishing SOA Governance
Enhances Capabilities
The primary goal of net-centric comput-
ing is to enhance the ability of each orga-
nization to efficiently meet the needs of
the warfighter. If the level of trust is
high, the organization can rely on both
the historical and runtime validation of
every service it depends on. Without
SOA governance, SOA remains a chaotic,
free-form exercise.

If the extended organization plans to
overcome the vertical silos and rely on an
application made from separately man-
aged services, each being developed and
maintained on their own life cycle, what
are the rules of the road?

Remote Method

Invocation Objects

Figure 3: Underneath the Expected Simplicity of a Created Net-centric Service-Based Workflow, a
Myriad of Distributed Existing and Disparate Technologies Must Be Managed and Tested

For Net-Centric Operations, the Future Is Federated

September 2007 www.stsc.hill.af.mil 27

According to Gartner analyst Frank
Kenney [3], SOA governance is made up
of three components: the Registry (or
Repository) where the assets of SOA are
stored and catalogued, Policy which is
meant to keep track of the rules of engage-
ment and service levels expected in SOA,
and SOA Testing that is needed to ensure
SOA life-cycle quality.

What good is a registry if it contains
assets that are not sufficiently tested at
both the service and the implementation
layer? Strong testing is required to ensure
that the SOA application continually
meets the business needs – in develop-
ment, integration, and deployment. The
longer testing is delayed as an aspect of
SOA governance, the wider the deviation
becomes between expected and delivered
results.

Defining a Big Policy
As we continue to mature the SOA gover-
nance space, the policy area appears to be
the one that is the most immature. In the
near future, governance will become syn-
onymous with policy. Each type of SOA
policy is vitally important to achieving reli-
ability and trust, as shown in Table 1.

Currently, most technologists focus
on testing the structural policy type men-
tioned in Table 1. True, integration stan-
dards are important, but once those types
of problems are solved, behavioral and
performance level validation will gain
prominence. After all, what good is certi-
fying structural policy if the SOA appli-
cation does not perform its function cor-
rectly and at the expected scale, design
time, run time, and change time?

The Certification Environment:Two
Sides of the Coin
There are two critical certification flows
to a robust, federated test and policy val-
idation strategy: a publish cycle and a
consume cycle. These can be considered
federal-level processes that form a certifi-
cation environment, a central authority
offering the rules of the road for creating
and offering services, then leveraging
these created services in an expected
fashion. The need for a publish cycle is
evident: A standards body must establish
and enforce criteria that provide for an
environment of trust to encourage and
enable reuse. The consume cycle is equal-
ly as important, as it must properly lay
out the expected use cases for published
services in a realistic and enforceable way.

The Publish Cycle
A development team that wants to offer
up a service to the community submits

their asset as a proposed service for reuse
(see Figure 4). This service is reviewed by
a cross-domain group called a certifica-
tion group that must verify that the
offered service conforms to expected
policies before making it available to the
community. Next, the group needs to
continuously monitor and test those ser-
vices, as they may change or fall out of
expected policy guidelines.

How the Publish Cycle Works
1. Offer. A developer or development

team creates a new, uncertified ver-
sion of a Service Component (SC).

They can offer the working SC along
with documentation to a certification
group for testing and approval.
Optionally, they can include working
test cases as part of the documenta-
tion process to aid certification and
store those in the registry.
a. Developers self-assess quality by

creating tests against their own
SCs (whether it is a technology
component or Web service)
before submitting them.

b. Developer offers the proposed SC
to a centralized registry for certifi-
cation. The development team can

Policy Type Definition Examples of Use

Structural The services components are

compliant with chosen

integration standards and

reusable with the current

development, deployment and

governance platforms.

- Do the pin outs line up so that

the components can technically

communicate with each other?

- Are the services following

correct authentication protocols?

- Is the XML syntax compliant?

Behavioral The service interacts and

provides correct results within

the context of the workflow or

task that needs to be

accomplished.

- Are the results I expected

actually being produced?

- Does the operational logic of

this service properly support the

process it is being used for?

Performance - Can this component produce

the results I need with the

number of users I need, within

the time constraints, and

infrastructure that I need it?

Runtime Expectations around the service

level of the component in the live

production environment.

- Expected response time for this

service is one second for our top

20 constituents and three

seconds for all others.

- Uptime must be > 99.999

percent.

Metrics and

Alert Monitoring

Repair

Issues

Candidate

Services

Component

Testing

Check-in

Policy Tests

Structural

Behavior

Performance

Process-level

Testing

Discover and

Assemble Certified

and Candidate

Services

Return Workflows

and Policy Violations

Check in

Policies and

Tests

Behavior

Performance

SOA Publish Cycle

SOA Consume Cycle

The service can sustain the

performance, scalability, and

reliability levels required over time.

Table 1: Defining Policy Types

Policy Type Definition Examples of Use

Structural The services components are

compliant with chosen

integration standards and

reusable with the current

development, deployment and

governance platforms.

- Do the pin outs line up so that

the components can technically

communicate with each other?

- Are the services following

correct authentication protocols?

- Is the XML syntax compliant?

Behavioral The service interacts and

provides correct results within

the context of the workflow or

task that needs to be

accomplished.

- Are the results I expected

actually being produced?

- Does the operational logic of

this service properly support the

process it is being used for?

Performance - Can this component produce

the results I need with the

number of users I need, within

the time constraints, and

infrastructure that I need it?

Runtime Expectations around the service

level of the component in the live

production environment.

- Expected response time for this

service is one second for our top

20 constituents and three

seconds for all others.

- Uptime must be > 99.999

percent.

Metrics and

Alert Monitoring

Repair

Issues

Candidate

Services

Component

Testing

Check-in

Policy Tests

Structural

Behavior

Performance

Process-level

Testing

Discover and

Assemble Certified

and Candidate

Services

Return Workflows

and Policy Violations

Check in

Policies and

Tests

Behavior

Performance

SOA Publish Cycle

SOA Consume Cycle

The service can sustain the

performance, scalability, and

reliability levels required over time.

Figure 4: Publish Cycle for Service Providers to Submit and Certify That Their Service Assets Will
Meet the Needs of the Net-Centric Community

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering September 2007

accelerate the process by submit-
ting functional, performance, and
other tests to validate the policy
out of the box.

2. Certify. Certifiers use existing tests
and iterate on those tests to validate
that the SC meets all required policies
at every stage of the service’s life
cycle. Tests are checked into the test
registry/repository alongside the ser-
vices, which are rated according to
their level of certification (each orga-
nization defines its own certification
levels, for example, from trial level of
certification to partially certified to fully
certified).

3. Verify. Initial certifications are not
much good if they are not enforced
later in production. Certifiers register
the test cases, and they are run con-
tinuously to validate that expectations
are met as the application environ-
ment evolves. Continuous verification
happens on a regular time interval or
based on any system level event.

4. Review. All metrics and test informa-
tion is published to both certification
and publishing teams for reporting
and alerting on SC issues. Alerting
mechanisms can inform any develop-
ment or deployment team of excep-
tions or errors within the certification
environment.

The Consume Cycle
The Consume cycle is equally important;
those who plan to leverage published ser-
vices must establish a model workflow
outlining their expected behavior so that
ongoing change does not cause the sys-
tem to fail in unexpected ways (Figure 5).

How the Consume Cycle Works
Consumers browse the registry of avail-
able services and use them to define
workflows that consume one or more
SCs as steps needed to complete an
objective.
1. Discovery. Development consumers

browse available SCs and their associ-
ated published policies and test cases
in order to determine applicability to
their proposed workflows. Develop-
ment teams can test them using exist-
ing tests or combined with a target
workflow test (i.e., testing the validity
of the workflow in absence of the
underlying services).

2. Confirm workflow and set policy.
Certifiers verify that the intended uses
defined within the consumer’s work-
flow are achievable, and once the
workflow is certified, it is published
to the registry as a set of expected
behaviors – a policy – that can be cer-
tified via suites of test cases that
accompany the workflow.

3. Workflow validation. Test suites for
workflows are checked into a contin-
uous testing process as policies for
continuous monitoring of required
quality of service – performance,
scalability, and reliability. These tests
set the bar for candidate and certified
services that are accountable to sup-
port the workflow.

4. Alerts and exceptions. A test dash-
board provides key metrics to devel-
opment, certification, and administra-
tion teams. Workflows are monitored
for issues as SC development life
cycles and demands on deployment

evolve. If an exception, error, or
boundary condition event occurs that
violates one or more workflows,
stakeholders can be alerted with root
cause test cases provided.
Most organizations have not even

considered managing policies or tests for
how they consume services. There is no
free beer in SOA. If there are no expecta-
tions placed upon the consumer of ser-
vices, total chaos ensues, and there is no
governance. By defining the expected
behaviors of the consumer, service
providers in the network can supply pro-
visions for this, and validate that all the
critical workflows are supported both
now and in the future when each new
release of the service component is pro-
posed.

A Center of Excellence for SOA
Life-Cycle Quality
Go Horizontal for SOA Excellence
One way to instill a sense of horizontal
trust across the organization is through
an SOA Center of Excellence (COE).
For example, consider an analogy of
states’ rights vs. federal rights. The indi-
vidual divisions (or states) need to con-
sider themselves autonomous on certain
levels and to owe certain rights at the fed-
eral level; but they also have the opportu-
nity to participate in how policies are set
at that federal level, so that it is not just a
down from above edict that immediately cre-
ates a defensive reaction instead of a uni-
fied purpose.

Booz Allen Hamilton Vice President
Art Fritzson noted the following:

I tend to reduce net-centricity to
two questions that are both
addressed by community. Have you
asked your community for help? and
Are you helping your community? If
you get positive answers to both
those questions, you’ve got 80-90
percent of what net-centricity
promises just through behavioral
changes. [4]

Which policies need to be tested as
so-called federal policies and which can
safely be handled at the state level? Policy
testing can be automated along four
domains: structural, behavioral, performance,
and runtime. At the federal level, structur-
al policy (or compliance) might be the
most important aspect, while from a
state-to-state, horizontal kind of policy,
behavioral and performance aspects will
perhaps be most important to define and
test at those levels.

Policy Type Definition Examples of Use

Structural The services components are

compliant with chosen

integration standards and

reusable with the current

development, deployment and

governance platforms.

- Do the pin outs line up so that

the components can technically

communicate with each other?

- Are the services following

correct authentication protocols?

- Is the XML syntax compliant?

Behavioral The service interacts and

provides correct results within

the context of the workflow or

task that needs to be

accomplished.

- Are the results I expected

actually being produced?

- Does the operational logic of

this service properly support the

process it is being used for?

Performance - Can this component produce

the results I need with the

number of users I need, within

the time constraints, and

infrastructure that I need it?

Runtime Expectations around the service

level of the component in the live

production environment.

- Expected response time for this

service is one second for our top

20 constituents and three

seconds for all others.

- Uptime must be > 99.999

percent.

Metrics and

Alert Monitoring

Repair

Issues

Candidate

Services

Component

Testing

Check-in

Policy Tests

Structural

Behavior

Performance

Process-level

Testing

Discover and

Assemble Certified

and Candidate

Services

Return Workflows

and Policy Violations

Check in

Policies and

Tests

Behavior

Performance

SOA Publish Cycle

SOA Consume Cycle

The service can sustain the

performance, scalability, and

reliability levels required over time.

Figure 5: Consume Cycle for Sharing Testing and Certification Processes in a Net-Centric
Environment

For Net-Centric Operations, the Future Is Federated

September 2007 www.stsc.hill.af.mil 29

Publication and consumption of
shared services will only happen in an
environment where trust is fostered.
Trust can never exist unless empirical
data (test data) that supports assertions
against expected policies about a compo-
nent (service, component module, etc.)
can be quantifiably and continuously
obtained. The levels of certification, and
what is defined as important to test, will
differ for different communities of inter-
est (COIs). Each federated consumer
may reuse, or not reuse, those assets that
will deliver efficiently for them.

Life-Cycle Quality and Testing
Software testing in the standard waterfall
development cycle has long been relegat-
ed to a project milestone somewhere
after development and integration hap-
pens. But in SOA, life-cycle quality is a
continuous part of SOA governance and
not an event that unit tests a specific
technology as a pre-release feel good.

ZapThink’s Ron Schmelzer said the
following on SOA quality:

Exposing a service is one step in
the life cycle of SOA develop-
ment, but it is not even the first
step. Indeed, the step companies
take to expose and execute
Services should be one of the last
they take as part of a mature
architectural process. Quality, in
particular, should be considered
before any services are created. If
a company has not considered
how services will be tested, how
consumers will reliably succeed or
fail in their service consumption,
and how they will iterate through
service versions, then any con-
sumers that bind to those initial
services will be doing so at their
own peril. [5]

The organization needs complete testing
from the Web layer through Web ser-
vices, databases, and all middle tiers of
the application. Merely testing at a single
layer will not uncover missed require-
ments.

Also, testing should support the entire
extended set of players collaborating on
SOA, from the process owners writing
the requirements, to the developers
implementing them in SOA, to the
Quality Assurance teams verifying func-
tionality and performance.

SOA testing should be continuous,
not just in development and integration
but in deployment because an SOA by
nature is never a static application. Each

element of the SOA is on its own devel-
opment and release life cycle.

The humble test is just like a bill sit-
ting in Congress waiting to become a law
(or an SOA policy). In order to get there,
it is going to need the support and nur-
turing of the SOA community at a team
level and across organizations.

In other words, we promote a test as
an actionable aspect of SOA governance.
To do this, the SOA test must contribute
more than a specific technology check-
point at a specific point in time. A test
must span the SOA application continu-
ously, and in so doing it becomes a verifi-
able SOA policy.

Conclusion
This article has outlined several key
strategies for leading the way to a true
net-centric approach to SOA life-cycle
quality and testing, which is one of the
three primary components of SOA gov-
ernance.

Success in SOA is not something you
can buy as a software package; it is some-
thing you must do. In fact, the quality of
your policy and the relevance of your cer-
tification efforts depends entirely upon
the skill and discipline level of all partici-
pants in the SOA strategy. The architect,
the developer, the tester, and the require-
ments owner must work to establish
trust, whether from a development per-
spective or a quality perspective.

The entire extended organization
needs to adopt an SOA COE – the fed-
eral authority that helps the underlying
states align around common goals. If we
think about what the SOA COE must
look like, then certainly there needs to be
a set of participants that are not behold-
en to any particular one of the divisions
involved, but there also needs to be sig-
nificant membership from all of those
who will be involved so that we get the
participation. After all, this is not us vs.
them – net-centricity is all of us in the
same boat together.u

References
1. Linthicum, David. “Real World

SOA.” Sept. 27, 2006 <http://web
log.infoworld.com/realworldsoa/arch
ives/2006/09/us_governmentso
.html>.

2. Kastner, Peter. “The Composite
Applications Benchmark.” Aberdeen
Group. Dec. 2006.

3. Kenney, L. Frank. “SOA Governance:
It’s More than Just Technology,”
Gartner, Inc. Nov. 2006.

4. Fritzson, Art. “Net-Centricity Survi-
val Guide – Utilizing Communities of

Interest to Exploit Information
Overload.” Network Centric Warfare
conference excerpt. Jan. 26-27, 2005,
Washington, DC.

5. Schmelzer, Ron. “Quantity Is No
Measure of Maturity,” ZapFlash
report. Apr. 5, 2007.

Notes
1. ITIL stands for Information

Technology Infrastructure Library, a
set of best practices for delivering
technology, used globally but largely
originated in the United Kingdom.
For more information see <www.itil.
co.uk/>.

2. WSDL stands for Web Services
Description Language, which is a pro-
tocol for identifying the properties of
a directory or library of Web Services.
SOAP stands for Simple Object
Access Protocol, which is the com-
mon method (a form of XML) for
transmitting data objects among Web
Services and other technologies. For
more, see <www.w3.org/TR/wsdl>.

About the Author

John Michelsen, is the
founder and chief archi-
tect of iTKO, Inc. He
has more than 15 years
of experience as a tech-
nical leader at all organi-

zation levels, designing, developing, and
managing large-scale, object-oriented
solutions in traditional and network
architectures. Michelsen is the chief
architect of iTKO’s LISA automated
testing product and a leading industry
advocate for software quality. Before
forming iTKO, he was director of devel-
opment at Trilogy Inc. and vice presi-
dent of development at AGENCY.
COM. Through work with clients such
as Cendant Financial, Microsoft,
American Airlines, Union Pacific, and
Nielsen Market Research, Michelsen has
deployed solutions using technologies
from the mainframe to the handheld
device.

iTKO Inc.
1505 LBJ FWY
STE 250
Dallas,TX 75234
Phone: (877) 289-4856
Fax: (817) 281-2458
E-mail: info@itko.com

Departments

30 CROSSTALK The Journal of Defense Software Engineering September 2007

Service-Oriented Architectures (SOAs)
www.service-architecture.com
This site will help you get started with Web Services and SOAs.
It features free articles, services, and product listings that can be
used to develop an SOA using Web Services. There are nearly
400 pages of online articles covering many types of SOAs that
provide an extensive overview of Web Services, related stan-
dards, and technologies that can be used in SOAs. Web Services
make up a connection technology and is a way to connect ser-
vices together.

Information Technology Library (ITL)
www.itl.nist.gov
ITL has been charged to lead the nation in utilizing existing and
emerging IT to meet national priorities that reflect the country’s
broad-based social, economic, and political values and goals. Its
extended charge continues under the Federal Information
Security Management Act to develop cybersecurity standards,
guidelines, and associated methods and techniques. Charged
under other legislation, such as the U.S. Patriot Act and the
Help America Vote Act, ITL is addressing the major challenges
faced by the nation in the areas of homeland security and elec-
tronic voting.

Service Oriented Enterprise (SOE)
www.serviceoriented.org
ServiceOriented.org was developed to educate readers about the
benefits and attributes of an SOE. ServiceOriented.org is part
glossary, part educational story. The site does not have a rigid
navigational structure, but instead invites readers to wander, fol-
lowing links to related topics as desired.

U.S.Army Enterprise Resource Planning
Service-Oriented Architecture Resource
Center
www.army.mil/escc/erp/soa.htm
As the Army embarks on transforming its warfighting capabili-
ties, it is imperative that the business capabilities/enablers/
processes transform to support the warfighter. Enterprise
Resource Planning (ERP) systems provide an integrated suite of
Information Technology applications that support the end-to-

end business operations of an entire organization. The ERP
Resource Center is designed to provide enterprise process own-
ers, program executive officers, program managers, and others
involved in the business transformation of the Army with
detailed information, supporting documents, and tools and
techniques regarding the use of ERP systems.

The World Wide Web Consortium (W3C)
www.w3.org
The W3C develops interoperable technologies (specifications,
guidelines, software, and tools) to lead the Web to its full poten-
tial. It is a forum for information, commerce, communication,
and collective understanding. On this site, you will find W3C
news, links to W3C technologies, and ways to get involved.
New visitors can find help under the Finding Your Way heading.

SOA Magazine
www.soamag.com
The SOA Magazine is a monthly online publication dedicated
to publishing specialized SOA articles, case studies, and papers
by industry experts and professionals. Amidst all the SOA-relat-
ed activity that is currently under way, there still remains a sig-
nificant amount of confusion as to what exactly constitutes a
SOA. Some qualify an SOA project by the fact that Web
Services technologies are being used, while others classify SOA
as a Web-centric variation of object-oriented design. The com-
mon criteria for contributions is that each explores a distinct
aspect of service-oriented computing.

Wikipedia
http://en.wikipedia.org/wiki/service-oriented_architecture
This Wikipedia Web site provides links to multiple SOA Web
sites, as well as information on SOAs. There is no widely agreed-
upon definition of SOA other than its literal translation that it
is an architecture that relies on service-orientation as its funda-
mental design principle. Service orientation describes an archi-
tecture that uses loosely coupled services to support the require-
ments of business processes and users. Resources on a network
in a SOA environment are made available as independent ser-
vices that can be accessed without knowledge of their underly-
ing platform implementation.

WEB SITES

SOA Security Reference Model

Nataraj Nagaratnam, Anthony Nadalin, Janet Mostow and
Sridhar Muppidi

IBM Software Group
Merely securing the perimeter with firewalls or routers is not suf-
ficient for a flexible business. Security remains one of the biggest
challenges given the complexity of a Service-Oriented
Architecture (SOA) based environment, due to loose coupling of
services and applications and their possible operations across trust

boundaries.
Security must be designed to cover the entire SOA environ-

ment, with services and applications capable of participating in
the enterprise security via security services. In addition, security
must be factored into the SOA life cycle, reflecting the fact that
security is a business requirement, and not just a technology
attribute. This article discusses a scenario and identifies a set of
security requirements. It then talks about capabilities that can be
used to address those needs.

MORE ONLINE FROM CCRROOSSSSTTAALLKK

CrossTalk is pleased to bring you this additional article
with full text at <www.stsc.hill.af.mil/crosstalk/2007/09/index.html>.

BACKTALK

September 2007 www.stsc.hill.af.mil 31

Because this column has to be written several months in
advance, I am writing it at the 2007 Systems and Software

Technology Conference (SSTC) in Tampa Bay, Florida. Talk
about a bunch of geeks1! I mean this in a nice way, of course
(because I know I am one).

Seriously, the SSTC had some great exhibits this year. Most of
the exhibits, of course, displayed software products designed to
help you develop and maintain your systems, which leads me to
the topic of this column: Service-Oriented Architectures (SOAs).
SOAs are loosely defined as an environment made available as inde-
pendent services that can be accessed without knowledge of their underlying
platform implementation2. Interoperability – what a concept. You
see, it’s all evolutionary, because….

… IN THE BEGINNING was machine language. You
remember?

BALR R14, R15

USING *,*?

The problem was that machine language was so closely tied to
the machine that it wasn’t even transportable across different
machines from the same vendor. Thus, programs that ran on an
IBM 1401 with a specific memory configuration would not even
transport to another differently configured 1401. What we need-
ed was…

… HIGH-LEVEL LANGUAGES. FORTRAN, COBOL,
RPG, and eventually, languages like C and Standardized are trans-
portable (within limits) from one machine to another. Which
leads to….

… PARAMETER PROBLEMS. If a C program passed two
parameters (such as an integer and a real), but the receiving sub-
program read them as a real followed by an integer, it would try
and work and usually fail because the data was interpreted incor-
rectly. When I taught at the U.S. Air Force Academy back in the
’80s, we used Pascal and always taught that parameters had to
agree (between caller and callee) in number, order, and type.
Early on, software engineers found out that about 75 percent of
all errors occurred not directly in the code but in the code inter-
faces. So we tried to emphasize to students to always check the
number, order, and type of parameters. Of course, telling them
to check their parameters was not as good as …

… ENFORCED PARAMETERS AND STRONGLY
TYPED LANGUAGES, Ada (and its successors), C++ (to an
extent), and Java. Want to pass four parameters that consist of
two reals and two floats? Then let the compiler and run-time
environment enforce the parameter number, order, and type. If
you tried passing them in the wrong order, then the program
would return an error and not attempt to convert incorrect data.
In fact, if you accidentally try and pass a floating point number
as an integer (and perhaps lose precision), the compiler/runtime
environment will also prevent that, giving you a better chance at
correct programs and preventing accidental parameter type mis-
matches. However, as programs grew larger and larger (and sys-
tems of systems evolved) the interfaces between multiple sub-
programs became larger and larger (with more and more para-
meters), which leads to…

… STANDARDIZED LIBRARIES. Why bother to pass a

zillion parameters to a handwritten user display procedure (which
took lots of time to write), when a completely pre-written
Graphical User Interface was available? All you have to do is use
an object-oriented language and development environment,
spend a little time researching which services and libraries are
available, and then inherit/instantiate the code you need. Don’t
write it – REUSE IT! However, to make standardized libraries
and reusable code/services efficient and cheap, we really need-
ed…

… STANDARDIZED OPERATING SYSTEM SER-
VICES. Back in the ’80s and ’90s, you couldn’t trust the operat-
ing system (OS) code. You used the OS to load your program,
but then you wanted to write your own memory management,
real-time scheduling, and other critical services. However, as OSs
became more and more standardized, they provided more and
more services. In fact, what you wanted was a reasonably secure
and reliable set of services that would let you not just reuse code,
but also let you utilize reusable services. Which is why we need…

… SERVICE-ORIENTED ARCHITECTURES. It’s all
about saving time and money. High-level languages are cheaper
than assembly language. Standardized OSs give you services that
are cheaper than roll your own. Reusing code saves you time and
money. So why not have take advantage of independent services with
defined interfaces that can be called to perform their tasks in a
standard way, without the service having foreknowledge of the
calling application, and without the application having or needing
knowledge of how the service actually performs its tasks. SOAs
are an evolutionary step above standardized OS services, and can
be regarded as a style of information systems architecture that enables the
creation of applications that are built by combining loosely coupled and inter-
operable services2. All of the good software engineering buzzwords
that we have tried to teach over the last 20 or so years are inher-
ent in an SOA: loosely coupled, interoperable, abstractions, and
enforced interfaces.

There you have it – engineering evolution in a nutshell. By
using an SOA, you will achieve savings in both development cost
and time. As a single example, interprocess communication and
network interface issues will have been solved in an SOA (and
when they need updating, the SOA will be updated, not your pro-
gram!). It’s just like plagiarism but without the moral dilemma.

Why do you want to reinvent the wheel when there are
already perfectly good wheels that somebody else has already
built?

— David A. Cook, Ph.D.
The AEgis Technologies Group, Inc.

dcook@aegistg.com

Notes
1. Well, where else could you find an audience that appreciates

the following? “Obviously, God LOVES the C programming
language, because in Genesis 1, verse 2, it clearly states that
the earth was without form, and it was VOID.” And, for you
FORTRAN programmers: “God is REAL (unless explicitly
declared INTEGER).”

2. Wikipedia <http://en.wikipedia.org/wiki/service-oriented_
architecture>.

Evolution in Action – Building Up to a
Service-Oriented Architecture

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE

BLDG 1238

Hill AFB, UT 84056-5820

PRSRT STD

U.S. POSTAGE PAID

Albuquerque, NM

Permit 737

CrossTalk is

co-sponsored by the

following organizations:

	Front Cover
	Table of Contents
	From the Publisher
	Service-Oriented Architectures
	The Security of Web Services as Software
	Four Pillars of Service-Oriented Architecture
	Defining Services Using the Warfighter’s Language

	Open Forum
	For Net-Centric Operations, the Future Is Federated

	Coming Events
	Call For Articles
	SSTC 2007
	Web Sites
	More Online From CrossTalk
	BackTalk
	Back Cover

